Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:22:25.905Z Has data issue: false hasContentIssue false

The effect of RuO2/Pt hybrid bottom electrode structure on the leakage and fatigue properties of chemical solution derived Pb(ZrxTi1−x)O3 thin films

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
J. G. Hong
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
S. K. Streiffer
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Angus I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Get access

Abstract

We have investigated the effect of RuO2 (10, 30, 50 nm)/Pt layered hybrid bottom electrode structure and film composition on the leakage and fatigue properties of chemical solution derived Pb(ZrxTi1−x)O3 (PZT) thin films. It was observed that the use of high Ti content (Zr: Ti = 30: 70) films with control of excess PbO at the thin RuO2 (10 nm)/Pt bottom electrode surface reduced leakage current and showed good fatigue properties with high remanent polarization compared to the use of high Zr films (Zr: Ti = 50: 50) or thicker RuO2 (30, 50 nm)/Pt bottom electrodes. Typical P-E hysteresis behavior of PZT films was observed even at an applied voltage of 3 V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics of these modified PZT thin films (Zr: Ti = 30: 70) on RuO2 (10 nm)/Pt, measured at 5 V, showed stable behavior, and less than 15% fatigue degradation was observed up to 1010 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adachi, H., Mitsuyu, T.. Yamajaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).Google Scholar
2.Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989).Google Scholar
3.Chen, J., Udayakumar, K.R., Brooks, K. G., and Cross, L.E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
4.Auciello, O., Gifford, K. D., and Kingon, A. I., Appl. Phys. Lett. 64, 2873 (1994).CrossRefGoogle Scholar
5.Kwok, C. K., Vijay, D.P., Desu, S.B., Parikh, N.R., and Hill, E. A., Proc. 4th Int. Symp. Integrated Ferroelectrics, edited by Paz de Araujo, C. A. (University of Colorado Press, Colorado Springs, CO, 1992), p. 412.Google Scholar
6.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
7.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
8.Kingon, A. I.et al., U.S. Patent No. 5,555,486 (4 September 1996).Google Scholar
9.Kim, Seung-Hyun, Choi, Y. S., Kim, C.E., and Oh, Y.J., J. Mater. Res. 12, 1576 (1997).CrossRefGoogle Scholar
10.Chung, I.S., Lee, J. K., Lee, W.I., Chung, C. W., and Desu, S.B., in Ferroelectric Thin Films, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 249254.Google Scholar
11.Al-Shareef, H. N., Auciello, O., and Kingon, A. I., J. Appl. Phys. 77 (5), 2146 (1995).CrossRefGoogle Scholar
12.Takahashi, Y. and Yamaguchi, J., J. Mater. Sci. 25, 3950 (1990).Google Scholar
13.Kim, S-H., Kim, C. E., and Oh, Y. J., Thin Solid Films 305, 321 (1997).Google Scholar
14.Willems, G.J., Wouters, D. J., Maes, H. E., and Nouwen, R., Int. Ferroelectrics 15, 19 (1997).CrossRefGoogle Scholar
15.Kim, C.J., Yoon, D.S., Jiang, Z.T., and No, K.S., J. Mater. Sci. 32, 1213 (1997).CrossRefGoogle Scholar
16.Chen, S.Y. and Chen, I.W., J. Am. Ceram. Soc. 81 (1), 97 (1998).CrossRefGoogle Scholar
17.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Ferroelectrics 152, 85 (1994).Google Scholar
18.Kwok, C.K. and Desu, S.B., Ceram. Trans. 25, 82 (1992).Google Scholar
19.Kim, S.H., Kim, D.J., Lee, K. M., Park, M., Kingon, A.I., Nemanich, R. J., Im, J., and Streiffer, S. K., unpublished.Google Scholar
20.Al-Shareef, H.N., Kingon, A.I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
21.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Thin Solid Films 256, 73 (1995).CrossRefGoogle Scholar
22.Longo, J. M., Raccah, P.M., and Goodenough, J. B., Mater. Res. Bull. 4, 191 (1969).CrossRefGoogle Scholar
23.Al-Shareef, H.N., Gifford, K.D., Ameen, M.S., Rou, S. H., Hren, P. D., Auciello, O., and Kingon, A.I., Ceram. Trans. 25, 97 (1992).Google Scholar
24.Kwok, C.K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).Google Scholar
25.Colla, E. L., Tagantsev, A. K., Taylor, D. V., and Kholkin, A. L., Int. Ferroelectrics 18, 19 (1997).CrossRefGoogle Scholar
26.Warren, W. L., Tuttle, B. A., and Dimos, D., Appl. Phys. Lett. 67, 1426 (1995).Google Scholar