Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:00:06.193Z Has data issue: false hasContentIssue false

Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance

Published online by Cambridge University Press:  25 May 2012

Chin Wei Lai
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia, 14300
Srimala Sreekantan*
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia, 14300
Pei San E
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia, 14300
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The present study aims to determine the optimum radio frequency (RF) sputtering power to obtain the desired W–TiO2 nanotubes for the best photoelectrochemical (PEC) performance. Tungsten (W) was deposited on titania (TiO2) nanotube arrays via RF sputtering technique under different sputtering powers from 50 to 250 W. The optimum content of W on TiO2 nanotube arrays play a significant role in maximizing the photocurrent generation efficiency to promote charge separation by accumulation of photogenerated electrons. The sputtering power below 180 W exhibited high-ordered and unbroken TiO2 nanotube arrays. However, the sputtering power over 180 W exhibited broken nanotube arrays and an oxide layer was formed due to the impact of high energy ions accelerated by a high sputtering power. The TiO2 nanotube arrays sputtered with tungsten at 50 W showed a better photocurrent density (1.55 mA/cm2), with a photoconversion efficiency of 2.2% in the PEC performance among the samples due to the effective charge separation and reduced recombination center in the resultant W–TiO2 nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohi, J.: Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3167 (2005).CrossRefGoogle Scholar
2.Kim, E.Y., Park, J.H., and Han, G.Y.: Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. J. Power Sources 184, 284 (2008).CrossRefGoogle Scholar
3.Yu, K. and Chen, J.: Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4, 1 (2009).CrossRefGoogle Scholar
4.Kitano, M., Matsuoka, M., Ueshima, M., and Anpo, M.: Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A-Gen. 325, 1 (2007).CrossRefGoogle Scholar
5.Takahashi, K., Uno, M., Okui, M., and Yamanaka, S.: Photoelectrochemical properties and band structure of oxide films on zirconium–transition metal alloys. J. Alloy Compd. 421, 303 (2006).CrossRefGoogle Scholar
6.Liu, Z.Y., Zhang, Q.Q., Zhao, T.Y., Zhai, J., and Jiang, L.: 3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. J. Mater. Chem. 21, 10354 (2011).CrossRefGoogle Scholar
7.Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., and Grimes, C.A.: A room-temeperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).CrossRefGoogle Scholar
8.Zhang, Z., Hossain, M.F., and Takahashi, T.: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energ. 35, 8528 (2010).CrossRefGoogle Scholar
9.Fernandez-Garcia, M., Martinez-Arias, A., Fuerte, A., and Conesa, J.C.: Nanostructured Ti-W mixed-metal oxides: Structural and electronic properties. J. Phys. Chem. B 109, 6075 (2005).CrossRefGoogle ScholarPubMed
10.Marsen, B., Miller, E.L., Paluselli, D., and Rocheleau, R.E.: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energ. 32, 3110 (2007).CrossRefGoogle Scholar
11.Zhu, K., Vinzant, T.B., Neale, N.R., and Frank, A.J.: Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano lett. 7, 3739 (2007).CrossRefGoogle ScholarPubMed
12.Sajjad, A.K.L., Shamaila, S., Tian, B., Chen, F., and Zhang, J.: One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 91, 397 (2009).CrossRefGoogle Scholar
13.Cong, Y., Zhang, J.L., Chen, F., and Anpo, M.: Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976 (2007).CrossRefGoogle Scholar
14.Ho, W.K., Yu, J.C., and Lee, S.C.: Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 111, 1115 (2006).CrossRefGoogle Scholar
15.Mohapatra, S.K., Mahajan, V.K., and Misra, M.: Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18, 445705 (2007).CrossRefGoogle Scholar
16.Parayil, S.K., Lee, Y.M., and Yoon, M.: Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films. Electrochem. Commun. 11, 1211 (2009).CrossRefGoogle Scholar
17.Dholam, R., Patel, N., Adami, M., and Miotello, A.: Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int. J. Hydrogen Energ. 34, 5337 (2009).CrossRefGoogle Scholar
18.Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).CrossRefGoogle Scholar
19.Xie, Y., Zhou, L., and Lu, J.: Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J. Mater. Sci. 44, 2907 (2009).CrossRefGoogle Scholar
20.Hathway, T., Rockafellow, E.M., Oh, Y.C., and Jenks, W.S.: Photocatalytic degradation using tungsten-modified TiO2 and visible light: Kinetic and mechanistic effect using multiple catalyst doping strategies. J. Photoch. Photobio. A Chem. 207, 197 (2009).CrossRefGoogle Scholar
21.Ni, M., Leung, K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11, 401 (2007).CrossRefGoogle Scholar
22.Cai, Q., Paulose, M., Varghese, O.K., and Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
23.Gong, D., Grimes, C.A., and Varghese, O.K.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
24.Liu, X., Jaramillo, T.F., Kolmakov, A., Baeck, S.H., Moskovits, M., Stucky, G.D., and McFarland, E.W.: Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. J. Mater. Res. 20, 1093 (2005).CrossRefGoogle Scholar
25.Higashimoto, S., Ushiroda, Y., and Azuma, M.: Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: Effect of the WO3 structures on charge separation behavior. Top. Catal. 47, 148(2008).CrossRefGoogle Scholar
26.Wang, J., Han, Y., Feng, M., Chen, J., Li, X., and Zhang, S.: Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. J. Mater. Sci. 46, 416 (2011).CrossRefGoogle Scholar
27.Ke, D., Liu, H., Peng, T., Liu, X., and Dai, K.: Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Mater. Lett. 62, 447 (2008).CrossRefGoogle Scholar
28.Sajjad, A.K.L., Shamaiila, S., Tian, B.Z., Chen, F., and Zhang, J.L.: Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater. 177, 781 (2010).CrossRefGoogle ScholarPubMed
29.Choi, C.H., Cho, W.I., Cho, B.W., Kim, H.S., Yoon, Y.S., and Tak, Y.S.: Radio frequency magnetron sputtering power effect on the ionic conductivities of lipon films. Electrochem. Solid St. 5, 14 (2002).CrossRefGoogle Scholar
30.Zhang, S., Sun, D., Fu, Y., Du, H., and Zhang, Q.: Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNx thin films. Diam. Relat. Mater. 13, 1777 (2004).CrossRefGoogle Scholar
31.Kim, K., Park, M., Lee, W., Kim, H.W., Lee, J.G., and Lee, C.: Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering. Mater. Sci. Tech. Ser. 24, 838 (2008).CrossRefGoogle Scholar
32.Liu, B.S., Wen, Q.H.L., and Zhao, X.J.: The effect of sputtering power on the structure and photocatalytic activity of TiO2 films prepared by magnetron sputtering. Thin Solid Films 517, 6569 (2009).CrossRefGoogle Scholar
33.Aw, K.C., Tsakadze, Z., Lohani, A., and Mhaisalkar, S.: Influence of radio frequency sputtering power towards the properties of indium zinc oxide semiconducting films. Scr. Mater. 60, 48 (2009).CrossRefGoogle Scholar
34.Sreekantan, S., Lai, C.W., and Lockman, Z.: Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2. J. Electrochem. Soc. 158, C1 (2011).CrossRefGoogle Scholar
35.Batista, C., Ribeiro, R., Carneiro, J., and Teixeira, V.: DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. J. Nanosci. Nanotechnol. 9, 4220 (2009).CrossRefGoogle ScholarPubMed
36.Lai, C.W. and Sreekantan, S.: Comparison of photocatalytic and photoelecttrochemical behavior of TiO2 nanotubes prepared by different organic electrolyte. Optoelectron. Adv. Mat. 6, 82 (2012).Google Scholar
37.Sreekantan, S., Hazan, R., and Lockman, Z.: Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518, 16 (2009).CrossRefGoogle Scholar
38.Mor, G., Varghese, O., Paulose, M., Shankar, K., and Grimes, C.: A review on highly ordered vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energ. Mat. Sol. C 90, 2011 (2006).CrossRefGoogle Scholar
39.Mahajan, V.K., Misra, M., Raja, K.S., and Mohapatra, S.K.: Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: Effect of crystallization and defect structures, J. Phys. D: Appl. Phys. 41, 125307 (2008).CrossRefGoogle Scholar
40.Ahn, K.S., Lee, S.H., Dillon, A.C., Tracy, E., and Pitts, R.: The effect of thermal annealing on photoelectrochemical responses of WO3 thin films. J. Appl. Phys. 101, 093524 (2007).CrossRefGoogle Scholar
41.Sun, L.D., Zhang, S., Sun, X.W., and He, X.D.: Effect of geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4551 (2010).CrossRefGoogle ScholarPubMed
42.Sclafani, A. and Herrmann, J.M.: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous method. J. Photochem. Photobiol. A 113, 181 (1998).CrossRefGoogle Scholar
43.Jaturong, J., Sarapong, P., Yoshikazu, S., and Susumu, Y.: Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J. Solid State Chem. 180, 1743 (2007).Google Scholar
44.Yang, X.L., Dai, W.L., Guo, C.W., Chen, H., Cao, Y., Li, H.X., He, H.Y., and Fan, K.N.: Synthesis of novel core-shell structured WO3/TiO2 spheroids and its applications in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J. Catal. 234, 438 (2005).CrossRefGoogle Scholar
45.Komornicki, S., Radecka, M., and Sobas, P.: Structural, electrical and optical properties of TiO2-WO3 polycrystalline ceramics. Mater. Res. Bull. 39, 2007 (2004).CrossRefGoogle Scholar
46.Leghari, S.A.K., Sajjad, S., Chen, F., and Zhang, J.: WO3/TiO2 composites with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J. 166, 906 (2011).CrossRefGoogle Scholar
47.Gong, J., Yang, C.Z., Pu, W., and Zhang, J.: Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chem. Eng. J. 167, 190 (2011).CrossRefGoogle Scholar
48.Couselo, N., Einschlag, F.S.G., Candal, R.J., and Jobbagy, M.: Tungsten-doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism, J. Phys. Chem. C 112, 1094 (2008).CrossRefGoogle Scholar
49.Kim, D.S., Yang, J.H., Balaji, S., Cho, H.J., Kim, M.K., Kang, D.U., Djaoued, Y., and Kwon, Y.U.: Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species, Cryst. Eng. Comm. 11, 1621 (2009).CrossRefGoogle Scholar
50.Marquez, A.M., Plata, J.J, Ortega, Y., and Sanz, J.F.: Structural defects in W-doped TiO2 (101) anatase surface: Density functional study, J. Phys. Chem. C 115, 16970 (2011).CrossRefGoogle Scholar
51.Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).CrossRefGoogle Scholar
52.Lai, C.W. and Sreekantan, S.: Effect of applied potential on the formation of self-organized TiO2 nanotube arrays and its photoelectrochemical response. J. Nanomater. 2011, 142463 (2011).CrossRefGoogle Scholar