Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:49:21.339Z Has data issue: false hasContentIssue false

Effect of pressure on the structure of Fe–N alloys formed by solid-state reaction

Published online by Cambridge University Press:  31 January 2011

B. Yao
Affiliation:
Department of Physics, Jilin University, Changchun, 136000, People's Republic China Department of Materials, Faculty of Science, National University of Singapore, 119260, Singapore
L. Liu
Affiliation:
Department of Physics, Jilin University, Changchun, 136000, People's Republic China
S. E. Liu
Affiliation:
Department of Physics, Jilin University, Changchun, 136000, People's Republic China
X. Hu
Affiliation:
Department of Materials, Faculty of Science, National University of Singapore, 119260, Singapore
W. H. Su
Affiliation:
Department of Physics, Jilin University, Changchun, 136000, People's Republic China
Get access

Abstract

Fe–N alloys with crystalline structures different from those obtained at atmospheric pressure were produced by solid-state reaction between Fe and amorphous boron nitride under high pressure. Two new paramagnetic Fe–N phases were obtained at temperatures above 800 K under pressures between 2.0 and 4.0 GPa. One is of cubic structure with lattice constant of 6.114 Å, and another is of orthorhombic structure with lattice constants of a = 4 8.443, b = 4 4.749, and c 4 3.993 Å. ε–Fe3Nx with N contents of 18.1 to 21.4 at.%, which could not be obtained at atmospheric pressure, was produced at pressures of 3.0 to 4.0 GPa and temperatures of 690 to 800 K. The mechanism of formation of ε–Fe3Nx under high pressure is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nakagawa, H., Nasu, S., Fujii, H., Takahashi, M., and Kanamaru, F., Hyperfine Interact. 69, 455 (1991).CrossRefGoogle Scholar
2Jacobs, H., Rechenbach, D., and Zachwjieja, U., J. Alloys Compd. 99, 1 (1995).Google Scholar
3Weber, T., de Wit, L., Saris, F.W., and Schaaf, P., Thin Solid Films 279, 217 (1996).CrossRefGoogle Scholar
4Leineweber, A., Jacobs, H., Hüning, F., Schilder, H., and Knockelmann, W., J. Alloys Compd. 288, 79 (1999).CrossRefGoogle Scholar
5Jack, K.H., Mater. Sci. Eng. 11, 1 (1973).CrossRefGoogle Scholar
6Tanaka, H., Nagakura, S., Nakamura, Y., and Hirotsu, Y., Acta Metall. Mater. 45, 1401 (1997).CrossRefGoogle Scholar
7Kim, T.K. and Takahashi, M., Appl. Phys. Lett. 20, 492 (1972).CrossRefGoogle Scholar
8Jack, K.H., Proc. R. Soc. A 195, 34 (1948).Google Scholar
9Jacobs, H., Rechenbach, D., and Zachwieja, U., J. Alloys Compd. 227, 10 (1995).CrossRefGoogle Scholar
10 JCPDS-international Center for Diffraction Data, No. 01–1219, (1998).Google Scholar
11Jack, K.H., Acta Crystallogr. 5, 404 (1952).CrossRefGoogle Scholar
12Takahashi, M., Fujii, H., Nakagawa, H., Nasu, S., and Kanamaru, F., Proc. 6th Int. Conf. Ferrites, Tokyo Kyoto, Japan 508 (1992), p. 508.Google Scholar
13Kikkawa, S., Yamamoto, T., Ohta, K., Takahashi, M., and Kanamaru, F.F., The Chemistry of Transition Metal Carbides and Nitrides, edited by Oyama, S.T. (Blackie A&P, Glasgow, United Kingdom, 1996), pp. 175190.CrossRefGoogle Scholar
14Hinomura, T. and Nasu, S., Hyperfine Interact. 111, 221 (1998).CrossRefGoogle Scholar
15Rissanen, L., Neubauer, M., Lieb, K.P., and Schaaf, P., J. Alloys Compd. 274, 74 (1998).CrossRefGoogle Scholar
16Tagawa, K., Kita, E., and Tasaki, A., Jpn. J. Appl. Phys. 21, 1569 (1982).CrossRefGoogle Scholar
17Saegusa, N., Tsukagoshi, T., Kita, E., and Tasaki, A., IEEE Trans. Magn. 19, 1629 (1983).CrossRefGoogle Scholar
18Brewer, M.A., Escher, C.J., Krishnan, K.M., Kobayashi, T., and Nakanishi, A., J. Appl. Phys. 81, 4128 (1997).CrossRefGoogle Scholar
19Koyano, T., Lee, C.H., Fukanaga, T., and Mizutani, U., Mater. Sci. Forum 88–90, 809 (1992).CrossRefGoogle Scholar
20Okamoto, S., Kitakami, O., and Shimoda, Y., J. Appl. Phys. 79, 1678 (1996).CrossRefGoogle Scholar
21Hinomura, T. and Nasu, S., Hyperfine Interact. 111, 221 (1998).CrossRefGoogle Scholar
22Rissanen, L., Neubauer, M., Lieb, K.P., and Schaaf, P., J. Alloys Compd. 274, 74 (1998).CrossRefGoogle Scholar
23Bundy, F.P., Nature 176, 51 (1955).CrossRefGoogle Scholar
24Wentorf, R.H. Jr., J. Chem. Phys. 26, 956 (1957).CrossRefGoogle Scholar
25Knittle, E., Kanner, R.B., Jeanloz, R., and Cohen, M.L., Phys. Rev. B 51, 2149 (1995).CrossRefGoogle Scholar
26O’Donnell, K., Rao, X.L., Laird, G., and Coey, J.M.D., Phys. Status Solidi A 153, 223 (1996).CrossRefGoogle Scholar
27Lee, P-Y., Chen, T-R., and Chin, T-S., J. Alloys Compd. 222, 179 (1995).CrossRefGoogle Scholar
28Chen, Y., Halstead, T., and Williams, J.S., Mater. Sci. Eng. A 206, 24 (1996).CrossRefGoogle Scholar
29Narula, C.K., Ceramic Precursor Technology and Its Applications (Dekker, New York, 1995), pp. 4649.Google Scholar
30Yao, B., Chen, W.J., Liu, L., Ding, B.Z., and Su, W.H., J. Appl. Phys. 84, 1412 (1998).CrossRefGoogle Scholar
31Yao, B., Liu, L., and Su, W.H., J. Appl. Phys. 86, 2464 (1999).CrossRefGoogle Scholar
32Yao, B., Liu, L., Liu, S.E., Ding, B.Z., Su, W.H., and Li, Y., J. Non-Cryst. Solids 277, 91 (2000).CrossRefGoogle Scholar
33Liu, L., Yao, B., Su, W.H., and Hu, Z.Q., Chin. Sci. Bull. 43, 467 (1998).CrossRefGoogle Scholar
34Coey, J.M.D. and Smith, P.A.I., J. Magn. Magn. Mater. 200, 405 (1999).CrossRefGoogle Scholar
35Chen, G.M., Jaggl, N.K.., Butt, J.B., Yeh, E.B., and Schwartz, L.H., J. Phys. Chem. 87, 5326 (1983).CrossRefGoogle Scholar
36Blackburn, L.D., Kaufman, L., and Cohen, M., Acta Metall. Mater. 13, 533 (1965).CrossRefGoogle Scholar