Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T02:49:56.898Z Has data issue: false hasContentIssue false

Effect of partial vacuum on YBCO thick films on Y2BaCuO5 and ZrO2 substrates

Published online by Cambridge University Press:  03 March 2011

Indu Dhingra
Affiliation:
Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
R.B. Tripathi
Affiliation:
Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
B.K. Das
Affiliation:
Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
Get access

Abstract

High Tc superconducting YBCO films have been prepared on Y2BaCuO5 (211) and ZrO2 substrates by screen printing and by the partial vacuum sintering method. The influence of reduced pressure and temperature in correlation with adherence, microstructure, and superconducting properties has been observed. This study was carried out under two different partial pressures, 1 and 45 mm. Films on Y2BaCuO5 substrates were found to have better superconducting properties as compared to the ZrO2 substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Budhani, R.C., , Singh-MoH-Tzeng, Dorr, H. J., and Bunshah, R.F., Appl. Phys. Lett. 51, 1277 (1987).CrossRefGoogle Scholar
2. Lay, K.W., J. Am. Ceram. Soc. 72, 696 (1989).CrossRefGoogle Scholar
3. Parmigiani, F., Chiarello, G., and Ripamonti, N., Phys. Rev. B 36, 7148 (1987).CrossRefGoogle Scholar
4. Shaw, T. M., Dimos, D., Batson, P. E., Schrott, A. G., Clarke, D. R., and Duncombe, P.R., J. Mater. Res. 5, 1176 (1990).Google Scholar
5. Selvaduray, G., Zhang, C., Balachandran, U., Gao, Y., Merkle, K. L., Shi, H., and Poeppel, R. B., J. Mater. Res. 7, 283 (1992).CrossRefGoogle Scholar
6. Takagi, K., Miyauchi, K., Ito, Y., Aida, T., Hasegawa, H., and Kawabe, U., Jpn. J. Appl. Phys. 26, L699 (1987).CrossRefGoogle Scholar
7. Hinks, D. G., Soderholm, L., Capone, D. W., Jorgensen, J. D., and Schuller, I. K., Appl. Phys. Lett. 50, 1688 (1987).Google Scholar
8. Uno, N., Enomoto, N., Tanaka, Y., and Talcami, H., Jpn. J. Appl. Phys. 27, L1003 (1988).Google Scholar
9. Rha, J. J., Yoon, K. J., Kang, S-J. L., and Yoon, D. N., J. Am. Ceram. Soc. 71, C328 (1988).CrossRefGoogle Scholar
10. Mukherjee, P. S., Simon, A., and Damodaran, A. D., Supercond. Sci. Technol. 5, 54 (1992).CrossRefGoogle Scholar
11. Ruckenstein, E. and Cheung, C.T., Supercond. Sci. Technol. 4, 183 (1991).CrossRefGoogle Scholar
12. Chen, N., Shi, D., and Goretta, K.C., J. Appl. Phys. 66, 2485 (1989).CrossRefGoogle Scholar
13. Manabe, T., Arai, K., Kondo, W., Mizuta, S., and Kumagai, T., J. Mater. Res. 7, 2337 (1992).CrossRefGoogle Scholar
14. Wang, W. N., Lu, H. B., Lin, W. J., Yao, P. C., Hsu, H. E., Tai, M. F., and Ku, H. C., Jpn. J. Appl. Phys. 27, L1268 (1988).Google Scholar
15. Agatsuma, K., Ohara, T., Tateishi, H., Kaiho, K., Ohkubo, K., and Karsawa, H., Physica C 153–155, 814 (1988).CrossRefGoogle Scholar
16. Fjellvåg, H., Karen, P., Kjekshus, A., Kofstad, P., and Norby, T., Acta Chem. Scand. A 42, 178 (1988).CrossRefGoogle Scholar