Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:47:57.746Z Has data issue: false hasContentIssue false

The effect of oxygen partial pressure on the formation of (Bi, Pb)2Sr2Ca2Cu3O10−x

Published online by Cambridge University Press:  29 June 2016

Wen Zhu
Affiliation:
Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
Patrick S. Nicholson
Affiliation:
Ceramic Engineering Research Group, Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
Get access

Abstract

The effect of atmosphere on the formation of the 110 K (Bi2Sr2Ca2Cu3O10, 2223) superconductor phase was studied at different oxygen partial pressures and temperatures. Step heating at low oxygen partial pressures with intermediate grinding promoted 110 K phase formation. With this synergy the shortest time for single-phase 110 K superconductor formation was found to be 12 h between 845 and 865°C at Po2 = 0.078 atmosphere. The activation energy of 110 K phase formation is 1513 KJ/mole in air.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Zhu, B., Lei, L., Yuan, S.L., Tang, S.B., Wang, W., Zheng, G.G., Guan, W.Y., and Zheng, J.Q., Physica C 157, 370 (1989).CrossRefGoogle Scholar
3.Murayama, N., Awano, M., Sudo, E., and Torii, Y., Jpn. J. Appl. Phys. 27, L2280 (1988).CrossRefGoogle Scholar
4.Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
5.Narumi, Shun-ichi, Ohtsu, H., Iguchi, I., and Yoshizaki, R., Jpn. J. Appl. Phys. 28, L27 (1989).CrossRefGoogle Scholar
6.Jao, J.C., Physica C 162–164, 915 (1989).CrossRefGoogle Scholar
7.Hwang, N.M., Bahng, G.W., Moon, H.G., and Park, J.C., Appl. Phys. Lett. 54 (16), 1588 (1989).CrossRefGoogle Scholar
8.Pena, O., Dinia, A., Perrin, C., Perrin, A., and Sergent, M., Physica C 162–164, 1215 (1989).CrossRefGoogle Scholar
9.Pena, O., Perrin, A., and Sergent, M., Physica C 156, 489 (1988).CrossRefGoogle Scholar
10.Perrin, A., Dinia, A., Pena, O., Perrin, C., and Sergent, M., Mater. Lett. 8 (5), 165 (1989).CrossRefGoogle Scholar
11.Dinia, M.A., Pena, O., Perrin, C., and Sergent, M., Solid State Commun. 73 (10), 715 (1990).CrossRefGoogle Scholar
12.Chung, F.H., J. Appl. Cryst. 7, 715 (1974).Google Scholar
13.Maeda, A., Noda, K., Kuchinokura, , and Tanaka, S., Jpn. J. Appl. Phys. 28, L576 (1989).CrossRefGoogle Scholar
14.Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
15.Huang, Y.T., Liu, R.G., Lu, S.W., Wu, P.T., and Wang, W.N., Appl. Phys. Lett. 56, 779 (1990).CrossRefGoogle Scholar
16.Fine, M.E., Introduction to Phase Transformation in Condensed System (The Macmillan Company, New York, 1965), p. 62.Google Scholar
17.Lin, W.T., Chu, Y.L., Chu, H.C., and Wu, P.T., Superconductivity and Applications, edited by Wu, P.T., Ku, H.C., Lee, W.H., and Liu, R. S. (World Scientific Publishing Co. Pte. Ltd., 1989), p. 394.Google Scholar
18.Messing, G. and Adair, J.H., “A short course on solution synthesis of ceramic powders”, presented by CUICAC, Chap. 7, 27 (1989).Google Scholar
19.Chiba, R. and Funakoshi, N., J. Non. Cryst. Solids 105, 149 (1988).CrossRefGoogle Scholar