Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:23:18.148Z Has data issue: false hasContentIssue false

Effect of nitrogen in the reaction atmosphere on the microstructure of carbon nanofibers grown by thermal chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Shinn-Shyong Tzeng*
Affiliation:
Department of Materials Engineering, Tatung University, Taipei 104, Taiwan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanofibers (CNFs) with different microstructures were synthesized by thermal chemical vapor deposition using different growth temperatures and methane/nitrogen gas mixtures. High-resolution transmission electron microscopy images revealed that bamboolike structure could be formed both by increasing the growth temperature and by increasing the nitrogen content in the reaction atmosphere at a lower growth temperature. Elemental analysis results indicated that no significant change in the nitrogen concentration was found regardless of the increase of nitrogen flow in the feed gas. The formation of bamboolike structure of CNFs and the effect of nitrogen gas on the microstructure change of CNFs were discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Jong, K.P. de and Geus, J.W.: Carbon nanofibers: Catalytic synthesis and applications. Cat. Rev.—Sci. Eng. 42(4), 481 (2000).CrossRefGoogle Scholar
2Chambers, A., Park, C., Baker, R.T.K. and Rodriguez, N.M.: Hydrogen storage in graphite nanofibers. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
3Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S. and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).CrossRefGoogle Scholar
4Zheng, G.B., Kouda, K., Sano, H., Uchiyama, Y., Shi, Y.F. and Quan, H.J.: A model for the structure and growth of carbon nano-fibers synthesized by the CVD method using nickel as a catalyst. Carbon 42, 635 (2004).CrossRefGoogle Scholar
5Zheng, J.S., Zhang, X.S., Li, P., Zhou, X.G. and Yuan, W.K.: Microstructure effect of carbon nanofiber on electrocalalytic oxygen reduction reaction. Catal. Today 131, 270 (2008).CrossRefGoogle Scholar
6Li, Z., Cui, X., Zheng, J.S., Wang, Q. and Lin, Y.: Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Anal. Chim. Acta 597, 238 (2007).CrossRefGoogle ScholarPubMed
7Lee, K.J., Yoon, S.H. and Jang, J.: Carbon nanofibers: A novel nanofiller for nanofluid applications. Small 3(7), 1209 (2007).CrossRefGoogle ScholarPubMed
8Lee, C.J., Park, J.H. and Park, J.G.: Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323, 560 (2000).CrossRefGoogle Scholar
9Jung, Z.Y., Lai, H.F., Weng, C.H., Lee, J.H., Lai, H.J., Lai, T.S. and Tsai, C.H.: On the kinetics of carbon nanotube grown by thermal CVD method. Diamond Relat. Mater. 13, 2140 (2004).CrossRefGoogle Scholar
10Jung, M., Eun, K.Y., Bail, Y.J., Lee, K.R., Shin, J.K. and Kim, S.T.: Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalytically pyrolizing C2H2. Thin Solid Films 398– 399, 150 (2001).CrossRefGoogle Scholar
11Ma, X. and Wang, E.: CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition. Appl. Phys. Lett. 78, 978 (2001).CrossRefGoogle Scholar
12Lin, C.H., Chang, H.L., Hsu, C.M., Lo, A.Y. and Kuo, C.T.: The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851 (2003).CrossRefGoogle Scholar
13Wang, E.G., Guo, Z.G., Ma, J., Zhou, M.M., Pu, Y.K., Liu, S., Zhang, G.Y. and Zhong, D.Y.: Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon 41, 1827 (2003).CrossRefGoogle Scholar
14Wang, T. and Wang, B.: Study of structure change of carbon nanotubes depending on different reaction gases. Appl. Surf. Sci. 253, 1606 (2006).CrossRefGoogle Scholar
15Lee, J.Y. and Lee, B.S.: Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition. Thin Solid Films 418, 85 (2002).CrossRefGoogle Scholar
16Lin, C.R., Su, C.H., Hung, C.H., Chang, C.Y. and Stobinski, L.: Characterization of bamboo-like CNTs prepared using sol-gel catalyst. Diamond Relat. Mater. 14, 794 (2005).CrossRefGoogle Scholar
17Chen, J., Li, Y., Ma, Y., Qin, Y. and Chang, L.: Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions. Carbon 39, 1467 (2001).CrossRefGoogle Scholar
18Lee, C.J. and Park, J.G.: Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 77, 3397 (2000).CrossRefGoogle Scholar
19Rodriguez, N.M.: A review of catalytically grown carbon nanofibers. J. Mater. Res. 8, 3233 (1993).CrossRefGoogle Scholar
20Dupuis, A.C.: The catalyst in the CCVD of carbon nanotubes: A review. Prog. Mater. Sci. 50, 929 (2005).CrossRefGoogle Scholar
21Zhong, D.Y., Liu, S., Zhang, G. and Wang, E.G.: Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission. J. Appl. Phys. 89(11), 5939 (2001).CrossRefGoogle Scholar
22Point, S., Minea, T., Bouchet-Fabre, B., Granier, A. and Turban, G.: XPS and NEXAFS characterization of plasma deposited vertically aligned N-doped MWCNT. Diamond Relat. Mater. 14, 891 (2005).CrossRefGoogle Scholar
23Wang, E.G.: A new development in covalently bonded carbon nitride and related materials. Adv. Mater. 11(13), 1129 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
24Jang, J.W., Lee, T.J. and Lee, C.J.: Structural study of nitrogen-doped effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84(15), 2877 (2004).CrossRefGoogle Scholar
25Ismagilov, Z.R., Shalagina, A.E., Podyacheva, O.Y., Ischenko, A.V., Kibis, L.S., Boronin, A.I., Chesalov, Y.A., Kochubey, D.I., Romanenko, A.I., Anikeeva, O.B., Buryakov, T.I. and Tkachev, E.N.: Structure and electrical conductivity of nitrogen-doped carbon nano-fibers. Carbon 47, 1922 (2009).CrossRefGoogle Scholar
26Shalagina, A.E., Ismagilov, Z.R., Podyacheva, O.Y., Kvon, R.I. and Ushakov, V.A.: Syntheisis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon 45, 1808 (2007).CrossRefGoogle Scholar
27Tao, X.Y., Zhang, X.B., Sun, F.Y., Cheng, J.P., Liu, F. and Luo, Z.Q.: Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1–xMoO4 catalyst. Diamond Relat. Mater. 16, 425 (2007).CrossRefGoogle Scholar
28Gaskell, D.R.: Introduction to the Thermodynamics of Materials, 5th ed. (Taylor & Francis, New York, 2008), p. 449.Google Scholar
29Zhao, N., He, C., Jiang, Z., Li, J. and Li, Y.: Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition. Mater. Lett. 60, 159 (2006).CrossRefGoogle Scholar
30Zhao, N., Cui, Q., He, C., Shi, C., Li, J., Li, H. and Du, X.: Synthesis of carbon nanostructures with different morphologies by CVD of methane. Mater. Sci. Eng., A 460–461, 255 (2007).CrossRefGoogle Scholar
31Chadderton, L.T. and Chen, Y.: A model for the growth of bamboo and skeletal nanotubes: Catalytic capillarity. J. Cryst. Growth 240, 164 (2002).CrossRefGoogle Scholar