Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:11:08.505Z Has data issue: false hasContentIssue false

Effect of LiYO2 on the synthesis and pressureless sintering of Y2SiO5

Published online by Cambridge University Press:  31 January 2011

Ziqi Sun
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
Yanchun Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Meishuan Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Y2SiO5 has potential applications as a high-temperature structural ceramic and environmental/thermal barrier coating. In this work, we synthesized single-phase Y2SiO5 powders utilizing a solid–liquid reaction method with LiYO2 as an additive. The reaction path of the Y2O3/SiO2/LiYO2 mixture with variation in temperatures and the role of the LiYO2 additive on preparation process were investigated in detail. The powders obtained by this method have good sinterability. Through a pressureless sintering process, almost fully dense Y2SiO5 bulk material was achieved with a very high density of 99.7% theoretical.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Warshaw, J., Roy, R.: Crystal chemistry of rare earth sesquioxides, aluminates and silicates. Prog. Sci. Technol. Rare Earths 1, 203 1963Google Scholar
2Shin, S.H., Jeon, D.Y., Suh, K.S.: Emission band shift of the cathodoluminescence of Y2SiO5:Ce phosphor affected by its concentration. Jpn. J. Appl. Phys. 40, 4715 2001CrossRefGoogle Scholar
3Bottger, T., Sun, Y., Reinemer, G.J., Core, R.L.: Diode laser frequency stabilization to transient spectral holes and spectral diffusion in Er3+:Y2SiO5 at 1536 nm. J. Lumin. 94–95, 565 2001CrossRefGoogle Scholar
4Deka, C., Chai, B., Shimony, Y., Zhang, X., Munin, E., Bass, M.: Laser performance of Cr4+:Y2SiO5. Appl. Phys. Lett. 61, 2141 1992CrossRefGoogle Scholar
5Lange, F.F., Singhal, S.C., Kuznicki, R.C.: Phase relations and stability studies in the Si3N4–SiO2–Y2O3 pseudoternary system. J. Am. Ceram. Soc. 60, 249 1977CrossRefGoogle Scholar
6Gauckler, L.J., Hohnke, H., Tien, T.Y.: The system Si3N4–SiO2–Y2O3. J. Am. Ceram. Soc. 63, 35 1980CrossRefGoogle Scholar
7Levin, E.M., Robbins, C.R., McMurdie, H.F.: Phase Diagrams for Ceramists—1969 Supplement The American Ceramic Society, Inc. Columbus, OH 1969 Fig. 2388, p. 76Google Scholar
8Wagner, S., Seifert, H.J., Aldinger, F.: High-temperature reaction of C/C-SiC composites with ceramic coatings, in Proceedings of the 10th International Conference on Advan. in Mater. & Mater. Proc. (ICAMMP-2002) Tata McGraw-Hill, New Delhi, 2002 71Google Scholar
9Ogura, Y., Kondo, M., Morimoto, T., Notomi, A., Sekigawa, T.: Oxygen permeability of Y2SiO5. Mater. Trans. 42, 1124 2001CrossRefGoogle Scholar
10Nowok, J.W., Kay, J.P., Kulas, R.J.: Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5. J. Mater. Res. 16, 2251 2001CrossRefGoogle Scholar
11Wang, J., Tian, S., Li, G., Liao, F., Jing, X.: Preparation and x-ray characterization of low-temperature phases of R2SiO5 (R = rare earth elements). Mater. Res. Bull. 36, 1855 2005CrossRefGoogle Scholar
12Seifert, H.J., Wagner, S., Fabrichnaya, O., Lukas, H., Aldinger, F., Ullmann, T., Schmucker, M., Schneider, H.: Yttrium silicate coatings on chemical vapor deposition–SiC-precoated C/C–SiC: Thermodynamic assessment and high-temperature investigation. J. Am. Ceram. Soc. 88, 424 2005CrossRefGoogle Scholar
13Matovic, B., Rixecker, G., Aldinger, F.: Densification of Si3N4 with LiYO2 additive. J. Am. Ceram. Soc. 87, 546 2004CrossRefGoogle Scholar
14Matovic, B., Rixecker, G., Boskovic, S., Aldinger, F.: Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics. Int. J. Mater. Res. 97, 1268 2006CrossRefGoogle Scholar
15Fukuda, K., Matrubara, H.: Anisotropic thermal expansion in yttrium silicate. J. Mater. Res. 18, 1715 2003CrossRefGoogle Scholar
16Kim, S., Sanders, T.: Thermodynamic modeling of phase diagrams in binary alkali silicate system. J. Am. Ceram. Soc. 74, 1833 1991CrossRefGoogle Scholar
17Bondar, I.A., Koroleva, N.K. ACerS–NIST Phase Equilibria Diagrams,, CD-ROM database, V3.0.1 (ACS, Westerville, OH, 2004 Fig. 06576Google Scholar
18Zhou, Y., Petric, A.: Thermodynamic stability of the lithium zirconates and lithium yttrium. J. Phys. Chem. Solids 55, 493 1994CrossRefGoogle Scholar