Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T14:50:35.257Z Has data issue: false hasContentIssue false

Effect of La and Y on Crystallization Temperatures of Hafnia and Zirconia

Published online by Cambridge University Press:  03 March 2011

Sergey V. Ushakov
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Crystalyn E. Brown
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Crystallization of amorphous Y- and La-doped HfO2 and ZrO2 nanophase powders was studied using thermal analysis and high-temperature x-ray diffraction. Substantial increase of crystallization temperature of amorphous hafnium and zirconium oxides could be achieved by alloying with La2O3. The crystallization temperature of Hf2La2O7 composition is higher than 900 °C, which makes it a candidate for advanced gate dielectrics. In contrast, Y-doping did not significantly raise the crystallization temperature.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kingon, A.I., Maria, J-P. and Streiffer, S.K., Nature 406 1032 (2000).CrossRefGoogle Scholar
2Demkov, A.A., Phys. Status Solidi (b) 226 57 (2001).3.0.CO;2-L>CrossRefGoogle Scholar
3Wilk, G.D., Wallace, R.M. and Anthony, J.M., J. Appl. Phys. 89 5243 (2001).CrossRefGoogle Scholar
4Gusev, E.Cabral, C. Jr.Copel, M., Emic, C.D. and Gribelyuk, M.Microelectron. Eng. 69 145 (2003).CrossRefGoogle Scholar
5Zhao, C., Richard, O., Young, E., Bender, H., Bender, G., Roebben, G., Haukka, S., De Gendt, S., Houssa, M., Carter, R., Tsai, W., Van Der Biest, O. and Heyns, M., J. Non-Cryst. Solids 303 144 (2002).CrossRefGoogle Scholar
6Molodetsky, I., Navrotsky, A., Paskowitz, M.J., Leppert, V.J. and Risbud, S.H., J. Non-Cryst. Solids 262 106 (2000).CrossRefGoogle Scholar
7Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G., Boerio-Goates, J. and Tissue, B.M.J. Amer. Cer. Soc. (submitted).Google Scholar
8Ushakov, S.V., Brown, C.E., Navrotsky, A., Demkov, A., Wang, C. and Nguyen, B.Y. in Novel Materials and Processes for Advanced CMOS, edited by Gardner, M.I., DeGendt, S., Maria, J-P., and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 745 Warrendale, PA, 2003) p. 3.Google Scholar
9Glushkova, V.B. and Krzhizhanovskaya, V.A., Ceram. Int. 11 80 (1985).CrossRefGoogle Scholar
10Shannon, R.D., Acta Crystallogr. A 32 751 (1976).CrossRefGoogle Scholar
11Stacy, D.W. and Wilder, D.R., J. Am. Ceram. Soc. 58 285 (1975).CrossRefGoogle Scholar
12Duran, P., Ceram. Int. 1, 10 (1975).CrossRefGoogle Scholar
13Wang, L.M., Wang, S.X., Gong, W.L., Ewing, R.C. and Weber, W.J.Mater. Sci. Eng. A 253M 106 (1998).Google Scholar
14Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M. and Ewing, R.C, Phys. Rev. B 66 054108/1 (2002).CrossRefGoogle Scholar
15Maria, J-P., Wickaksana, D., Parette, J. and Kingon, A.I., J. Mater. Res. 17 1571 (2002).CrossRefGoogle Scholar