Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T02:44:46.902Z Has data issue: false hasContentIssue false

Effect of indentation unloading conditions on phase transformation induced events in silicon

Published online by Cambridge University Press:  31 January 2011

Tom Juliano
Affiliation:
Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Yury Gogotsi*
Affiliation:
Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Vladislav Domnich
Affiliation:
Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author.
Get access

Abstract

More than 2500 indentations were made on a silicon wafer surface using a range of different unloading rates and maximum applied loads. The unloading curves were examined for characteristic events (pop-out, kink pop-out, elbow followed by pop-out, and elbow) that were assigned to different phase transitions within the affected material based on Raman microspectroscopy analysis of residual imprints. The effect of unloading rate and maximum applied load on the average contact pressure at the beginning of the event was found. A permissible range for each event to occur was established.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Domnich, V. and Gogotsi, Y., Rev. Adv. Mater. Sci. 3, 1 (2002).Google Scholar
2.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
3.Hainsworth, S.V., Whitehead, A.J., and Page, T.F., in Plastic Deformation of Ceramics, edited by Routbort, J.L. (Plenum Press, New York, 1995), p. 173.CrossRefGoogle Scholar
4.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., and Swain, M.V., J. Mater. Res. 14, 2338 (1999).Google Scholar
5.Domnich, V., Gogotsi, Y., and Dub, S., Appl. Phys. Lett. 76, 2214 (2000).CrossRefGoogle Scholar
6.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Sci. 30, 2455 (1995).CrossRefGoogle Scholar
7.Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A., Nickel, K.G., J. Mater. Res. 15, 871 (2000).CrossRefGoogle Scholar
8.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P., J. Mater. Res. 16, 1500 (2001).CrossRefGoogle Scholar
9.Hu, J.Z., Merkle, L.D., Menoni, C. S., and Spain, I.L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
10.Hu, J.Z. and Spain, I.L., Solid State Commun. 51, 263 (1984).CrossRefGoogle Scholar
11.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., Wyrobek, J.T., Acta Mater. 44, 3585 (1995).CrossRefGoogle Scholar
12.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P., Appl. Phys. Lett. 77, 3749 (2000).CrossRefGoogle Scholar
13.Kailer, A., Gogotsi, Y.G., and Nickel, K.G., J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
14.Crain, J., Ackland, G.J., Maclean, J.R., Piltz, R.O., Hatton, P.D., and Pawley, G.S., Phys. Rev. B 50, 13043 (1994).Google Scholar
15.Gogotsi, Y., Welz, S., Ersoy, D., and McNallan, M.J., Nature 411, 283 (2001).CrossRefGoogle Scholar
16.Kulkarni, A.V. and Bhushan, B., Thin Solid Films 290, 206 (1996).CrossRefGoogle Scholar
17.Zarudi, I. and Zhang, L.C., Tribology Int. 32, 701 (1999).CrossRefGoogle Scholar
18.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
19.Novikov, N.V., Dub, S.N., Milman, Y.V., Gridneva, I.V., and Chugunova, S.I., J. Superhard Mater. (Sverkhtverdye Materialy) 18, 32 (1996).Google Scholar
20.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).Google Scholar
21.Hay, J.L. and Pharr, G.M., in Mechanical Testing and Evaluation, edited by Medlin, D. (ASM International, Materials Park, OH, 2000), Vol. 8, p. 232.Google Scholar
22.Hanfland, M. and Syassen, K., High Pressure Res. 3, 242 (1990).CrossRefGoogle Scholar
23.Carlson, D.E. and Wronski, C.R., in Amorphous Semiconductors, edited by Brodsky, M.H. (Springer, New York, 1979), p. 287.CrossRefGoogle Scholar
24.Zhang, L.C. and Zarudi, I., Int. J. Mech. Sci. 43, 1985 (2001).CrossRefGoogle Scholar
25.Shen, T.D., Koch, C.C., McCormick, T.L., Nemanich, R.J., Huang, J.Y., Huang, J.G., J. Mater. Res. 10, 139 (1995).CrossRefGoogle Scholar
26.Brazhkin, V.V., Lyapin, A.G., Popova, S. V., and Voloshin, R.N., Phys. Rev. B 51, 7549 (1995).CrossRefGoogle Scholar