Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:55:57.398Z Has data issue: false hasContentIssue false

The effect of growth condition on the structure of 2H – AlN films deposited on Si(111) by plasma-assisted molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

U. Kaiser*
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
P. D. Brown
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CB2 3QZ Cambridge, United Kingdom
I. Khodos
Affiliation:
Institute of Microelectronics Technology and High Purity Materials RAS, 142432 Chernogolovka, Russia
C. J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CB2 3QZ Cambridge, United Kingdom
H. P. D. Schenk
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
W. Richter
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of substrate cleaning, nitridation time, and substrate temperature in the range 800–1000 °C on the microstructure of AlN/Si(111) films grown by simultaneous plasma-assisted molecular beam epitaxy have been investigated. It has been demonstrated, using a combination of conventional and high-resolution transmission electron microscopy, that the interface structure, the film defect structure, and the film surface roughness are strongly related. The formation of single crystal 2H–AlN films with atomically flat surfaces occurs at 800 °C for conditions of 2.5 nm/min growth rate on very pure, atomically flat Si substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katayama, M., Fukui, T., Shiosaki, T., and Kawabata, A., Jpn. J. Appl. Phys. 22, 139 (1982).CrossRefGoogle Scholar
2.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., J. Appl. Phys. Lett. 48, 353 (1986).CrossRefGoogle Scholar
3.Ponce, F. A., Krusor, B. S., Mayor, J. S., Plano, W. E., and Welch, D. F., Appl. Phys. Lett. 67, 410 (1995).Google Scholar
4.Weeks, T. W., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G., and Davis, R. F., Appl. Phys. Lett. 67, 401 (1995).Google Scholar
5.Tanaka, S., Iwai, S., and Aoyagi, Y., J. Cryst. Growth 170, 329 (1997).Google Scholar
6.Ambacher, O., Dimitrov, R., Lentz, D., Metzger, T., Rieger, W., and Stutzman, M., J. Cryst. Growth 170, 335 (1997).Google Scholar
7.Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
8.Taylor, A. and Jones, R. M., Silicon Carbide, A High Temperature Semiconductor, edited by O'Conor, J. R. and Smittens, J. (Pergamon Press, New York, 1960), p. 147.Google Scholar
9.Tanaka, S., Kern, R. S., Bentley, J., and Davis, R. F., Jpn. J. Appl. Phys. 35, 1641 (1996).CrossRefGoogle Scholar
10.Davis, R. F., Tanaka, S., and Kern, R. S., J. Cryst. Growth 163, 93 (1996).CrossRefGoogle Scholar
11.Stemmer, S., Pirouz, P., Ikuhara, Y., and Davis, R. F., Phys. Rev. Lett. 77, 1797 (1996).Google Scholar
12.Dovidenko, K., Oktyabrsky, S., and Narayan, J., J. Appl. Phys. 79, 2439 (1996).CrossRefGoogle Scholar
13.Meng, W. J., Sell, J.A., and Perry, T. A., J. Appl. Phys. 75, 3446 (1994).Google Scholar
14.Ivanov, I., Hultman, L., Järrendahl, K., Märtensson, P., Sundgren, J. E., Hjörvarsson, B., and Greene, J. E., J. Appl. Phys. 78, 5721 (1995).CrossRefGoogle Scholar
15.Mutoh, M., O'Keefe, P., Den, S., Kumuro, S., Morikawa, T., Park, Y. J., Hara, K., Muneka, H., and Kukimoto, H., Appl. Surf. Sci. 113, 622 (1997).Google Scholar
16.Karmann, S., Schenk, H. P. D., Kaiser, U., Fissel, A., and Richter, W., Mater. Sci. Eng. (in press).Google Scholar
17.Kern, S. and Pustinen, D. A., RCA Rev. 31, 197 (1970).Google Scholar
18.Ishizaka, I. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).CrossRefGoogle Scholar
19.Xin, Y., Brown, P.D., Cheng, T.S., Foxon, C. T., and Humphreys, C.J., Inst. Phys. Conf. Ser. 157, 95 (1997).Google Scholar
20.Sánchez-García, A., Calleja, E., Monroy, E., Sánchez, F., Calle, F., Munoz, E., Sanz-Hervás, A., Villar, C., and Aguilar, M., MRS Internet J. Nitride Semiconductor Research 2, 33 (1998).Google Scholar
21.Bourret, A., Barski, A., Rouviere, J. L., Renaud, G., and Barbier, A., J. Appl. Phys. 83, 4 (1998).CrossRefGoogle Scholar
22.Kaiser, U., Newcomb, S. B., Stobbs, M. W., Adamik, M., Fissel, A., and Richter, W., J. Mater. Res. 13, 35713579 (1998).CrossRefGoogle Scholar
23.Malengreau, F., Vermeersch, M., Hagège, S., Sporken, R., Lange, M. D., and Caudano, R., J. Mater. Res. 12, 175 (1997).Google Scholar
24.Bergmann, R., Kühne, J., Werner, H., Oelting, S., Albrecht, M., Strunk, H. P., Herz, K., and Powalla, M., IEEE First World Conference on Photovoltaic Energy Conversion, Hawa 1994 (IEEE Publishing Service, New York 1994), p. 1398.Google Scholar