Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T16:15:25.587Z Has data issue: false hasContentIssue false

Effect of grain size on yield strength of Ni3Al and other alloys

Published online by Cambridge University Press:  31 January 2011

M. Takeyama
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

This paper analyzes the effect of grain size on yield stress of ordered Ni3Al and Zr3Al, and mild steels that show Lüders band propagation after yielding, using the Hall-Petch relation, σy = σ0 + kyd−½, and the new relation proposed by Schulson et al., σy = σ0 + kd −(p − 1)/2 [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni3Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni3Al prepared by powder extrusion, fit the Hall-Petch relation, whereas the data from boron-doped Ni3Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lüders strain and alloy preparation methods. On the basis of the Hall-Petch analysis, the small slope ky is obtained only for hypostoichiometric Ni3Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni3Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni3Al than for hypostoichiometric alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, C. T. and Stiegler, J. O.Science 9, 636 (1984).Google Scholar
2Aoki, K. and Izumi, O.Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
3Liu, C. T. and Koch, C. C.Technical Aspects of Critical Materials used by the Steel Industry (National Bureau of Standards, Washington, DC, 1983), Vol. II B NBSIR 83-2679-9.Google Scholar
4Liu, C. T.White, C. L. and Horton, J. A.Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
5Schulson, E. M.Weihs, T. P.Viens, D. V. and Baker, J.Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
6Schulson, E. M.Weihs, T. P.Baker, J.Frost, H. J. and Horton, J. A.Acta Metall. 34, 1395 (1986).CrossRefGoogle Scholar
7Weihs, T. P.Zinoviev, V.Viens, D. V. and Schulson, E. M.Acta Metall. 35, 1109 (1987).CrossRefGoogle Scholar
8Takeyama, M. and Liu, C. T. Acta Metall. (in press) (1988).Google Scholar
9Taub, A. I.Huang, S. C. and Chang, K. M.Metall. Trans. A15, 399 (1984).Google Scholar
10Oya, Y.Mishima, Y.Yamada, K. and Suzuki, T.J. Iron Steel Inst. Jpn. 70, 80 (1984).CrossRefGoogle Scholar
11Hanada, S.Watanabe, S. and Izumi, O.J. Mater. Sci. 21, 302 (1986).Google Scholar
12Khadkikar, P. S.Vedula, K. and Shabel, B. S.Metall. Trans. A 18, 425 (1987).Google Scholar
13Gell, M.Duhl, D. N.Gupta, D. K. and Sheffler, K. D.J. Met. 39(7), 11 (1987).Google Scholar
14Khadkikar, P. S. and Vedula, K.Metall. Trans. A 18, 1995 (1987).Google Scholar
15Schulson, E. M. and Roy, J. A.Acta Metall. 26, 29 (1978).Google Scholar
16Hall, E. O., Yield Point Phenomena in Metalsand Alloys (Macmillan, New York, 1970).Google Scholar
17Morrison, W. B.Trans. ASM 59, 824 (1966).Google Scholar
18Marcinkowski, M. J. and Fisher, R. M.Trans. TMS-AIME 223, 293 (1965).Google Scholar
19Johnston, T. L. and Feltner, C. E.Metall. Trans. 1, 1161 (1970).CrossRefGoogle Scholar
20Arko, A. C. and Liu, Y. H.Metall. Trans. 2, 1875 (1971).CrossRefGoogle Scholar
21Armstrong, R.Codd, I.Donthwaite, R. M. and Petch, N. J.Philos. Mag. 7, 45 (1962).CrossRefGoogle Scholar
22Cottrell, A. H.Dislocations and Plastic Flow in Crystals (Clarendon, Oxford, 1953), p. 99.Google Scholar
23Chang, K.-M.Huang, S. C. and Taub, A. I. GE-CRD Report No. 85CRD040, February 1985.Google Scholar
24Sastry, S. M. L.Mater. Sci. Eng. 22, 237 (1976).Google Scholar
25Benhood, N.Douthwaite, R. M. and Evans, J. T.Acta Metall. 28, 1133 (1980).Google Scholar
26Besag, F. M. C. and Smallman, R. E.Acta Metall. 18, 429 (1970).CrossRefGoogle Scholar
27Hopkin, L. M. T.J. Inst. Metals 84, 102 (1955-1956).Google Scholar
28Miura, S.Ochiai, S.Oya, Y.Mishima, Y. and Suzuki, T. (private communication, 1986).Google Scholar
29Aoki, K. and Izumi, O.Nippon Kinzoku Gakkaishi 41, 170 (1977).Google Scholar
30Copley, S. M. and Kear, B. H.Trans. TMS-AIME 239, 977 (1967).Google Scholar
31Huang, S. C.Taub, A. I. and Chang, K. M.Acta Metall. 32, 1703 (1984).CrossRefGoogle Scholar
32Liu, C. T. (unpublished results, 1986).Google Scholar
33Rawlings, R. D. and Staton-Bevan, A., J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
34Liu, C. T. and White, C. L. in the Proceedings of the Materials Research Society Symposium on High-Temperature Ordered Interme-tallic Alloys (Materials Research Society, Pittsburgh, PA, 1984), Vol. 39, p. 365.Google Scholar
35Taylor, G. I.J. Inst. Met. 62, 307 (1938).Google Scholar
36Farkas, D. (private communication, 1987).Google Scholar