Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T17:27:54.222Z Has data issue: false hasContentIssue false

Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates

Published online by Cambridge University Press:  25 November 2014

Byoung-Joon Kim
Affiliation:
Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon 641-831, Republic of Korea
Hae-A-Seul Shin
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Ji-Hoon Lee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Tae-Youl Yang
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
Thomas Haas
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
Patric Gruber
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
In-Suk Choi
Affiliation:
High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Oliver Kraft*
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
Young-Chang Joo*
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The thickness dependence of the electrical stability under monotonic and cyclic tensile loading is investigated for Cu films on polymer substrates. As for monotonic tensile deformation, thicker films show better stability than thinner films due to their higher ductility and the larger capability of strain accommodation. For the fatigue resistance, however, a more complex behavior was observed depending on the amount of the applied strain. For low strain amplitude in the high cycle fatigue (HCF) regime, thinner films exhibit longer fatigue life because the larger strength of thinner films suppresses dislocation movement and damage nucleation. However, for high strain amplitudes in the low cycle fatigue (LCF) regime, the fatigue life for thinner films is drastically reduced compared to thicker films. It is shown that fatigue coefficients in the LCF regime can be obtained when applying the Coffin–Manson relationship.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle ScholarPubMed
Nam, K.T., Kim, D-W., Yoo, P.J., Chiang, C-Y., Meethong, N., Hammond, P.T., Chiang, Y-M., and Belcher, A.M.: Virus enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006).Google Scholar
Li, Y., Lee, D.K., Kim, J.Y., Kim, B., Park, N.G., Kim, K., Shin, J.H., Choi, I.S., and Ko, M.J.: Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ. Sci. 5, 8950 (2012).CrossRefGoogle Scholar
Coakley, K.M. and McGehee, M.D.: Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533 (2004).CrossRefGoogle Scholar
Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).CrossRefGoogle ScholarPubMed
Zhu, X.F., Zhang, B., Gao, J., and Zhang, G.P.: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178 (2009).CrossRefGoogle Scholar
Lee, J-H., Kim, N-R., Kim, B-J., and Joo, Y-C.: Improved mechanical performance of solution-processed MWCNT/Ag nanoparticle composite films with oxygen-pressure-controlled annealing. Carbon 50, 98 (2012).Google Scholar
Lu, N., Wang, X., Suo, Z., and Vlassak, J.J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).CrossRefGoogle Scholar
Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., and Lewis, J.A.: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590 (2009).CrossRefGoogle ScholarPubMed
Carta, R., Jourand, P., Hermans, B., Thoné, J., Brosteaux, D., Vervust, T., Bossuyt, F., Axisa, F., Vanfleteren, J., and Puers, R.: Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sens. Actuators, A 156, 79 (2009).CrossRefGoogle Scholar
Kim, D.H., Song, J., Won, M.C., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., and Rogers, J.A.: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105, 18675 (2008).CrossRefGoogle ScholarPubMed
Schwaiger, R., Dehm, G., and Kraft, O.: Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83, 693 (2003).Google Scholar
Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., and Ding, X.D.: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 195404 (2008).CrossRefGoogle Scholar
Sim, G-D., Hwangbo, Y., Kim, H-H., Lee, S-B., and Vlassak, J.J.: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).Google Scholar
Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., and Arzt, E.: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 56, 2318 (2008).Google Scholar
Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
Niu, R.M., Liu, G., Wang, C., Ding, X.D., and Sun, J.: Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007).Google Scholar
Lu, N., Suo, Z., and Vlassak, J.J.: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).CrossRefGoogle Scholar
Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).Google Scholar
Schwaiger, R. and Kraft, O.: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).CrossRefGoogle Scholar
Sim, G-D., Lee, Y-S., Lee, S-B., and Vlassak, J.J.: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).Google Scholar
Coffin, L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931 (1954).Google Scholar
Manson, S.S.: Behaviour of materials under conditions of thermal stress. In National Advisory Commission on Aeronautics Report 1170 (Lewis Flight Propulsion Laboratory, Cleveland, 1954).Google Scholar
Kim, B-J., Cho, Y., Jung, M-S., Shin, H-A-S., Moon, M-W., Han, H.N., Nam, K.T., Joo, Y-C., and Choi, I-S.: Fatigue-free, electrically reliable copper electrode with nanohole array. Small 8, 3300 (2012).Google Scholar
Kim, B-J., Shin, H-A-S., Jung, S-Y., Cho, Y., Kraft, O., Choi, I-S., and Joo, Y-C.: Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 61, 3473 (2013).CrossRefGoogle Scholar
Yu, D.Y.W. and Spaepen, F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 94, 2991 (2004).CrossRefGoogle Scholar
Gruber, P.A., Arzt, E., and Spolenak, R.: Brittle-to-ductile transition in ultra thin Ta/Cu film systems. J. Mater. Res. 24, 1906 (2009).Google Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Company, London, UK, 1988).Google Scholar
Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).Google Scholar
Dauskardt, R., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).CrossRefGoogle Scholar
Cooper, C.V. and Fine, M.E.: Coffin-Manson relation for fatigue crack initiation. Scr. Metall. 18, 593 (1984).Google Scholar
Sangid, M.D.: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58 (2013).Google Scholar
Laird, C. and Krause, A.R.: A theory of crack nucleation in high strain fatigue. Int. J. Fract. Mech. 4, 219 (1968).CrossRefGoogle Scholar
McDowell, D.L.: Applications of Continuum Damage Mechanics to Fatigue and Fracture (Amer Society for Technology, USA, 1997).Google Scholar
Kraft, O., Schwaiger, R., and Wellner, P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319, 919 (2001).Google Scholar