Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:31:24.306Z Has data issue: false hasContentIssue false

The effect of electronic energy loss on the dynamics of thermal spikes in Cu

Published online by Cambridge University Press:  08 February 2011

S. Prönnecke
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
A. Caro
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
M. Victoria
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
T. Diaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, L-644, Livermore, California 94550
M.W. Guinan
Affiliation:
Lawrence Livermore National Laboratory, L-644, Livermore, California 94550
Get access

Abstract

We present results of a molecular dynamics simulation study of the effect of electron-ion interactions on the dynamics of the thermal spike in Cu. Interatomic forces are described with a modified embedded atom method potential. We show that the electron-ion interaction acts to reduce the lifetime of the thermal spike and therefore the amount of atomic rearrangement that takes place in energetic displacement cascades in Cu. The results point toward the important effect that inelastic energy losses might have on the dynamics of displacement cascades in the subcascade energy regime where the lifetime of the thermal spike is expected to exceed the electron-phonon coupling time.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Proceedings of Workshop on Fusion Materials, Lugano, Switzerland, May 1988, Rad. Eff. Def. Sol. 113 (1990).Google Scholar
2 See, e.g., Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987).Google Scholar
3Guinan, M. W. and Kinney, J., J. Nucl. Mater. 103/104, 1319 (1981).CrossRefGoogle Scholar
4Diaz, T.Rubia, de la, Averback, R. S., Benedek, R., and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).Google Scholar
5Diaz, T.Rubia, de la, Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).Google Scholar
6Hsieh, H., Diaz, T.Rubia, de la, Averback, R. S., and Benedek, R., Phys. Rev. B 40, 9986 (1989).CrossRefGoogle Scholar
7Lindhard, J., Scharff, M., and Schiøtt, H. E., Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 33, No. 14 (1963).Google Scholar
8Caro, A. and Victoria, M., Phys. Rev. A 40, 2287 (1989).CrossRefGoogle Scholar
9Daw, M. and Baskes, M., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
10Chou, S. P. and Ghoniem, N. M., presented at the IV ICFRM, Kyoto, Japan, 1989; to be published in J. Nucl. Mater.Google Scholar
11Garrison, B. J., Winograd, N., Deaven, D. M., Reimann, C. T., Lo, D. Y., Tombrello, T. A., Harrison, D. E. Jr, and Shapiro, M. H., Phys. Rev. B 37, 7197 (1988).CrossRefGoogle Scholar
12Diaz de la Rubia, T. and Guinan, M. W., Proceedings of Workshop on Fusion Materials, Silkeborg, Denmark, 1989 (to be published in J. Nucl. Mater.) and University of California Report UCRL-103511 (1990).Google Scholar
13Finnis, M., “MOLDY6–A Molecular Dynamics Program for Simulation of Pure Metals”, Harwell Rept. AERE-R-13182 (1989).Google Scholar
14Fincham, D. and Heyes, D. M., in Advances in Chemical Physics, edited by Evans, M. W. (Wiley, New York, 1985), Vol. LXIII, p. 493.CrossRefGoogle Scholar
15Heyes, D. M. and Smith, W., in Information Quarterly for Computer Simulation of Condensed Phases, No. 26 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, England, 1987), p. 68.Google Scholar
16 See, e.g., Biswas, R. and Hamann, D. R., Phys. Rev. B 34, 895 (1986) and references therein.CrossRefGoogle Scholar
17Echenique, P. M., Nieminen, R. M., and Ritchie, R. H., Solid State Commun. 37, 779 (1981).CrossRefGoogle Scholar
18Flynn, C. P. and Averback, R. S., Phys. Rev. B 38, 7118 (1988).CrossRefGoogle Scholar
19McMillan, W. I., Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
20Elsayed-Ali, H. E., Norris, T. B., Pressot, M. A., and Mourou, G. A., Phys. Rev. Lett. 58, 1212 (1987).CrossRefGoogle Scholar
21Allen, P. B., Phys. Rev. Lett. 59, 1460 (1987).CrossRefGoogle Scholar
22Allen, P. B., Phys. Rev. B 36, 2920 (1987).CrossRefGoogle Scholar
23Kittel, C., Introduction to Solid State Physics, 2nd ed. (Wiley, New York, 1963).Google Scholar
24Foiles, S., Baskes, M., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
25Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
26Diaz, T.Rubia, de la, Ph. D. Thesis, State University of New York at Albany, Albany, NY (1989).Google Scholar
27Kim, S-J., Nicolet, M-A., Averback, R. S., and Peak, D., Phys. Rev. B 37, 38 (1988).CrossRefGoogle Scholar
28Dederichs, P. H., Lehmann, C., Schober, H. R., Scholz, A., and Zeller, R., J. Nucl. Mater. 69/70, 176 (1978).CrossRefGoogle Scholar
29Sigmund, P., Appl. Phys. Lett. 25, 169 (1974).CrossRefGoogle Scholar
30Wilson, W. D., Haggmark, L. G., and Biersack, J. P., Phys. Rev. B 15, 2458 (1977).CrossRefGoogle Scholar
31Ziegler, J., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.Google Scholar