Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T02:41:34.206Z Has data issue: false hasContentIssue false

The effect of doping Ag on the microstructure of La2/3Sr1/3MnO3 films

Published online by Cambridge University Press:  31 January 2011

Q. Zhan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People' Republic of China
R. Yu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People' Republic of China
L. L. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People' Republic of China
D. X. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People' Republic of China
J. Li
Affiliation:
Center for Superconducting and Magnetic Materials and Department of Physics, National University of Singapore, Singapore 119260
C. K. Ong
Affiliation:
Center for Superconducting and Magnetic Materials and Department of Physics, National University of Singapore, Singapore 119260
Get access

Abstract

The microstructure of Ag-doped La2/3Sr1/3MnO3 (LSMO) thin films deposited on (001) LaAlO3 single-crystal substrates was systematically investigated in cross section and plan view by high-resolution electron microscopy and analytical electron microscopy. The results showed that the films deposited at 750 °C were perfectly epitaxial with or without Ag-doping. No Ag in the doped film was detected. On the other hand, the LSMO films deposited at 400 °C were less perfect. With increasing Ag-doping level, the shape of LSMO grains became irregular, and the grain size increased gradually. Large polycrystalline clusters consisting of LSMO, AgO, and Ag grains formed in the doped films, and the amount and size of them increased with increasing Ag-doping level. Ag existed at the LSMO grain boundaries in its elemental state. A growth process for the LSMO-Ag system is discussed based on the experimental results. The enhancement of the magnetic spin disorders at the grain boundaries and interfaces caused by doping Ag could result in an improvement of low-field magnetoresistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Coey, J.M.D., J. Appl. Phys. 85, 5576 (1999).CrossRefGoogle Scholar
2.Khan, H.R., Mater. Sci. Forum 373–376, 93 (2001).CrossRefGoogle Scholar
3.Zener, C., Phys. Rev. 82, 403 (1951).CrossRefGoogle Scholar
4.Hwang, H.Y., Cheong, S-W., Ong, N.P., and Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).CrossRefGoogle Scholar
5.Gupta, A., Gong, G.Q., Xiao, G., Duncombe, P.R., Lecoeur, P., Trouilloud, P., Wang, Y.Y., Dravid, V.P., and Sun, J.Z., Phys. Rev. B 54, 15629 (1996).CrossRefGoogle Scholar
6.Li, X.W., Gupta, A., Xiao, G., and Gong, G.Q., Appl. Phys. Lett. 71, 1124 (1997).CrossRefGoogle Scholar
7.Gu, J.Y., Kwon, C., Robson, M.C., Trajanovic, Z., Ghosh, K., and Sharma, R.P., Appl. Phys. Lett. 70, 1763 (1997).CrossRefGoogle Scholar
8.Ju, H.L. and Sohn, H., Solid State Commun. 102, 463 (1997).CrossRefGoogle Scholar
9.Walter, T., Do¨rr, K., Mu¨ller, K-H., Holzapfel, B., Eckert, D., Wolf, M., Schla¨fer, D., Schultz, L., and Gro¨tzschel, R., Appl. Phys. Lett. 74, 2218 (1999).CrossRefGoogle Scholar
10.Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B-S., MacManus-Driscoll, J.L., Cohen, L.F., Evetts, J.E., and Blamire, M.G., Nature 387, 266 (1997).CrossRefGoogle Scholar
11.Kwon, C., Jia, Q.X., Fan, Y., Hundley, M.F., Reagor, D.W., Coulter, J.Y., and Peterson, D.E., Appl. Phys. Lett. 72, 486 (1998).CrossRefGoogle Scholar
12.Lu, C.J., Wang, Z.L., Xiong, G.C., and Lian, G.J., J. Mater. Res. 15, 2454 (2000).CrossRefGoogle Scholar
13.Kumar, D., Sharon, M., Pinto, R., Apte, P.R., Pai, S.P., Purandare, S.C., Gupta, L.C., and Vijayaraghavan, R., App. Phys. Lett. 62, 3522 (1993).CrossRefGoogle Scholar
14.Moshfegh, A.Z., Wang, Y.Q., Sun, Y.Y., Mesarwi, A., Hor, P.H., and Ignatiev, A., Physica C 218, 396 (1993).CrossRefGoogle Scholar
15.Pinto, R., Apte, P.R., Pai, S.P., and Kumar, D., Physica C 207, 13 (1993).CrossRefGoogle Scholar
16.Kumar, D., Sharon, M., Apte, P.R., Pinto, R., Pai, S.P., Purandare, S.C., D’Souza, C.P., Gupta, L.C., and Vijayaraghavan, R., J. Appl. Phys. 76, 1349 (1994).CrossRefGoogle Scholar
17.Kalyanaraman, R., Oktyabrsky, S., and Narayan, J., J. Appl. Phys. 85, 6636 (1999).CrossRefGoogle Scholar
18.Shreekala, R., Rajeswari, M., Pai, S.P., Lofland, S.E., Smolyaninova, V., Ghosh, K., Ogale, S.B., Bhagat, S.M., Downes, M.J., Greene, R.L., Ramesh, R., and Venkatesan, T., Appl. Phys. Lett. 74, 2857 (1999).CrossRefGoogle Scholar
19.Tao, T., Cao, Q.Q., Gu, K.M., Xu, H.Y., Zhang, S.Y., and Du, Y.W., Appl. Phys. Lett. 77, 723 (2000).Google Scholar
20.Bathe, R., Adhi, K.P., Patil, S.I., Marest, G., Hannoyer, B., and Ogale, S.B., Appl. Phys. Lett. 76, 2104 (2000).CrossRefGoogle Scholar
21.Ong, C.K., Xu, S.Y., and Zhou, W.Z., Rev. Sci. Instrum. 69, 3659 (1998).CrossRefGoogle Scholar
22.Zhan, Q., Yu, R., He, L.L., Li, D.X., and Guo, X.N., Acta Metall. Sin. 37, 337 (2001).Google Scholar
23.Lebedev, O.I., Tendeloo, G. Van, Amelinckx, S., Ju, H.L., and Krishnan, K.M., Philos. Mag. A 80, 673 (2000).CrossRefGoogle Scholar
24.Helmot, R. Von, Wecker, J., Samwer, K., Haupt, L., and Ba¨rner, K., J. Appl. Phys. 76, 6925 (1994).CrossRefGoogle Scholar
25.Kerr, J.A., in CRC Handbook of Chemistry and Physics 1999–2000, edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1998).Google Scholar
26.Pinto, R., Apte, P.R., Adhi, K.P., Ogale, S.B., Kumar, D., and Hegde, M.S., J. Appl. Phys. 78, 5204 (1995).CrossRefGoogle Scholar
27.Li, J., Huang, Q., Li, Z.W., You, L.P., Xu, S.Y., and Ong, C.K., J. Phys.: Condens. Matter 13, 3419 (2001).Google Scholar