Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:10:28.175Z Has data issue: false hasContentIssue false

Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

Published online by Cambridge University Press:  31 January 2011

S. DiStefano
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109
R. Ramesham
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109
D.J. Fitzgerald
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109
Get access

Abstract

Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. We report some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique. The films were characterized using differential scanning calorimetry (DSC), stress analysis, scanning electron microscopy (SEM), x-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron microprobe, and potentiodynamic polarization technique.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hashimoto, K. and Masumoto, T., Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1981), Vol. 20, p. 291.Google Scholar
2.Hashimoto, K., Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworth's, London, 1983), p. 471.CrossRefGoogle Scholar
3.Hashimoto, K. and Masumoto, T., Glassy Metals: Magnetic, Chemical and Structural Properties, edited by Hasegawa, R. (CRC Press, Cleveland, OH, 1983), p. 236.Google Scholar
4.Hashimoto, K. and Masumoto, T., 21st Colloque de Metallurgie (France Commissariat a I' Energie Atomique, 1978), p. 231.Google Scholar
5.Hashimoto, K., Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Wurzburg, Germany, September 3–7, 1984), Vol. II, pp. 14491456.Google Scholar
6.Diegle, R. B., Sorenson, N. R., Tsuru, T., and Latanision, R. M., Treatise on Materials Science and Technology, edited by Scully, J. C. (Academic Press, New York, 1983), Chap. 2.Google Scholar
7.Proc. Symp. on Corrosion, Electrochemistry, and Catalysis of Metallic Glasses, edited by Diegle, R. B. and Hashimoto, K. (The Electrochemical Society, NJ, 1988), Vol. 88–1.Google Scholar
8.Archer, M. D., Corke, C. C., and Harji, B. H., Electrochim. Acta 32, 13 (1987).CrossRefGoogle Scholar
9.Waseda, Y. and Aust, K.T., J. Mater. Sci. 16, 2337 (1981).CrossRefGoogle Scholar
10.Nowak, W.B., Mater. Sci. Eng. 23, 301 (1976).CrossRefGoogle Scholar
11.Diegle, R. B. and Slater, J. E., Corrosion 32, 155 (1976).CrossRefGoogle Scholar
12.Devine, T. M., J. Electrochem. Soc. 124, 38 (1977).CrossRefGoogle Scholar
13.Klement, W., Willens, R.H., and Duwez, P., Nature 187, 869 (1980).CrossRefGoogle Scholar
14.Naka, M., Hashimoto, K., and Masumoto, T., J. Jpn. Inst. Met. 38, 835 (1974).CrossRefGoogle Scholar
15.Burleigh, T. D., Johns, E. R. C., and Latanision, R. M., Proc. 5th Int. Conf. on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Wurzburg, Germany, September 3–7, 1984), Vol. II, pp. 14571464.Google Scholar
16.Janik-Czachor, M. and Viefhaus, H., Proc. Symp. on Corrosion, Electrochemistry, and Catalysis of Metallic Glasses (The Electrochemical Society, NJ, 1988), Vol. 88–1, pp. 5379.Google Scholar
17.Archer, M.D., Harji, B.H., and Watts, J., Proc. Symp. on Corrosion, Electrochemistry, and Catalysis of Metallic Glasses (The Electrochemical Society, NJ, 1988), Vol. 88–1, pp. 4152.Google Scholar
18.Duwez, P., Willens, R.H., and Klement, W., J. Appl. Phys. 31, 1136 (1960).CrossRefGoogle Scholar
19.Williams, R. M., Thakoor, A. P., Khanna, S. K., and Johnson, W. L., J. Electrochem. Soc. 131, 2791 (1984).CrossRefGoogle Scholar
20.Thornton, J. A., Deposition Technologies for Films and Coatings, edited by Bunshah, R. F. (Noyes Publications, Park Ridge, NJ, 1982), Chap. 5.Google Scholar
21.Naka, M., Hashimoto, K., and Masumoto, T., J. Non-Cryst. Solids 28, 403 (1978).CrossRefGoogle Scholar
22.Ramesham, R., DiStefano, S., Fitzgerald, D. J., Thakoor, A. P., and Khanna, S. K., J. Electrochem. Soc. 134, 2133 (1987).CrossRefGoogle Scholar
23.Arthur, J. A., The Structure and Chemistry of Solid Surfaces, edited by Somorjai, G. A. (John Wiley, New York, 1969), paper #46.Google Scholar
24.Campbell, D. S., “Mechanical Properties of Thin Solid Films,” Handbook of Thin Film Technology, edited by Maissel, L. and Glang, R. (McGraw-Hill, New York, 1970).Google Scholar
25.Naka, M., Hashimoto, K., and Masumoto, T., Corrosion 32, 146 (1976).CrossRefGoogle Scholar
26.Hashimoto, K., Naka, M., Asami, K., and Masumoto, T., Boshoku Gijitsu 27, 279 (1978).Google Scholar
27.Naka, M., Fujimori, H., Okamoto, I., and Arata, Y., Proc. 7th ICVM (Tokyo, Japan, 1982), p. 650.Google Scholar