Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:35:32.792Z Has data issue: false hasContentIssue false

Effect of Al and Ag addition on phase formation, thermal stability, and mechanical properties of Cu–Zr-based bulk metallic glasses

Published online by Cambridge University Press:  27 April 2011

Nilam Barekar*
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany
Piter Gargarella
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany
Kaikai Song
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany
Simon Pauly
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany
Uta Kühn
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden, Germany; and TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The compositional dependence of phase formation, thermal stability, and mechanical properties of (Cu0.5Zr0.5)100−x(Al0.5Ag0.5)x (x = 2, 4, 6, 8, 10, 12, 14, 16) bulk metallic glasses was studied. The Young’s modulus (85 ± 1 to 95 ± 1 GPa) and Vicker’s hardness (585 ± 7 to 627 ± 8 Hv) increased with increasing Al + Ag content from 8 to 16 at.%, respectively. The liquidus temperature decreased from 1210 ± 2 to 1110 ± 2 K with increasing Al + Ag content from 2 to 16 at.%. The starting temperature of the endothermic event related with transformation of the low-temperature equilibrium phases to CuZr parent phase increased from 997 ± 2 to 1043 ± 2 K, whereas the electronegativity difference for the (Cu0.5Zr0.5)100−x(Al0.5Ag0.5)x (x = 2, 4, 6, 8, 10, 12) alloys decreased from 0.2838 to 0.2713. The martensitic transformation temperatures decreased with increasing Al and Ag content for the (Cu0.5Zr0.5)100−x(Al0.5Ag0.5)x (x = 2, 4, 6, 8) alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., and Duwez, P.: Non crystalline structure in solidified Gold-Silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
2.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloy. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3.Johnson, W.L.: Bulk glass forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
4.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. Rep. 44, 45 (2004).CrossRefGoogle Scholar
5.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
6.Miracle, D.B.: The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).CrossRefGoogle Scholar
7.Nagel, S.R. and Tauc, J.: Nearly free electron approach to the theory of metallic glass alloys. Phys. Rev. Lett. 35(6), 380 (1975).CrossRefGoogle Scholar
8.Louzguine, D.V. and Inoue, A.: Electronegativity of the constituents rare earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79(21), 3410 (2001).CrossRefGoogle Scholar
9.Louzguine-Luzgin, D.V., Inoue, A., and Botta, W.J.: Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl. Phys. Lett. 88, 011911-(1–3) (2006).CrossRefGoogle Scholar
10.Lu, Z.P., Liu, C.T., and Dong, Y.D.: Effects of atomic bonding nature and size mismatch on thermal stability and glass forming ability of bulk metallic glasses. J. Non-Cryst. Solids 341, 93 (2004).CrossRefGoogle Scholar
11.Fang, S., Xiao, X., Xia, L., Li, W., and Dong, Y.: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).CrossRefGoogle Scholar
12.de Oliveira, M.F., Pereira, F.S., Bolfarini, C., Kiminami, C.S., and Botta, W.J.: Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics 17, 183 (2009).CrossRefGoogle Scholar
13.Wang, W.H.: Elastic moduli and behaviors of metallic glasses. J. Non-Cryst. Solids 351, 1481 (2005).CrossRefGoogle Scholar
14.Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (1–10) (2006).CrossRefGoogle Scholar
15.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85(2), 77 (2005).CrossRefGoogle Scholar
16.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: Work-hardenable ductile bulk metallic glasses. Phys. Rev. Lett. 94, 205501 (1–4) (2005).CrossRefGoogle Scholar
17.Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H., and Zhang, Z.F.: High strength ductile Cu base metallic glass. Intermetallics 14, 876 (2006).CrossRefGoogle Scholar
18.Eckert, J., Das, J., Pauly, S., Duhamel, C., Kim, K.B., Yi, S., and Wang, W.H.: Impact of microstructural inhomogenities on the ductility of bulk metallic glasses. Mater. Trans. JIM 48(7), 1806 (2007).CrossRefGoogle Scholar
19.Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L., and Gorland, C.: Bulk metallic glass formation in binary Cu-rich alloy series Cu100-xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
20.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystals-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85(5), 221 (2005).CrossRefGoogle Scholar
21.Pauly, S., Bednarčik, J., Kühn, U., and Eckert, J.: Plastically deformable Cu–Zr intermetallics. Scr. Mater. 63, 336 (2010).CrossRefGoogle Scholar
22.Pauly, S., Liu, G., Gorantla, S., Wang, G., Kühn, U., Kim, D.H., and Eckert, J.: Criteria for tensile plasticity in Cu–Zr–Al bulk metallic glasses. Acta Mater. 58(14), 4883 (2010).CrossRefGoogle Scholar
23.Barekar, N.S., Pauly, S., Kumar, R.B., Kühn, U., Dhindaw, B.K., and Eckert, J.: Structure-property relations in bulk metallic Cu-Zr-Al alloys. Mater. Sci. Eng. A 527(21/22), 5867 (2010).CrossRefGoogle Scholar
24.Hofmann, D.C.: shape memory bulk metallic glass composites. Science 329, 1294 (2010).CrossRefGoogle ScholarPubMed
25.Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Trans. JIM 43(11), 2921 (2002).CrossRefGoogle Scholar
26.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
27.Zhang, W. and Inoue, A.: High glass-forming ability and good mechanical properties of new glassy alloys in C-Zr-Ag ternary system. J. Mater. Res. 21(1), 234 (2006).CrossRefGoogle Scholar
28.Xu, D., Duan, G., and Johnson, W.L.: Unusual glass forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92 (24), 245504(1–4) (2004).CrossRefGoogle ScholarPubMed
29.Dia, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., and Xu, J.: A new centimetre diameter Cu-based BMG. Scr. Mater. 54, 1403 (2006).Google Scholar
30.Pauly, S., Das, J., Mattern, N., Kim, D.H., and Eckert, J.: Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses. Intermetallics 17, 453 (2009).CrossRefGoogle Scholar
31.Zhang, G.Q., Jiang, Q.K., Chen, L.Y., Shao, M., Liu, J.F., and Jiang, J.Z.: Synthesis of centimetre-size Ag doped Zr-Cu-Al metallic glasses with large plasticity. J. Alloy. Comp. 424, 176 (2006).CrossRefGoogle Scholar
32.Zhang, W., Zhang, Q., Qin, C., and Inoue, A.: Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass forming ability. Mater. Sci. Eng. B 148, 92 (2008).CrossRefGoogle Scholar
33.Zhang, Q., Zhang, W., Xie, G., and Inoue, A.: Glass forming ability and mechanical properties of the ternary Cu-Zr-Al and quaternary Cu-Zr-Al-Ag bulk metallic glass. Mater. Trans. JIM 48(7), 1626 (2007).CrossRefGoogle Scholar
34.Zhang, W., Zhang, Q., and Inoue, A.: Formation and thermal stability of new Zr-Cu based bulk metallic glassy alloys with unusual GFA. J. Alloy. Comp. 483, 112 (2009).CrossRefGoogle Scholar
35.Zhang, Q., Zhang, W., and Inoue, A.: New Cu-Zr based metallic glasses with large diameters of upto 1.5 cm. Scr. Mater. 55, 711 (2006).CrossRefGoogle Scholar
36.Zhang, Q., Zhang, W., and Inoue, A.: Transition from plasticity to brittleness in Cu-Zr-based bulk metallic glasses. Mater. Trans. JIM 48(6), 1272 (2007).CrossRefGoogle Scholar
37.Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C.: Enhancement of the glass forming ability of Cu-Zr-Al alloys by Ag addition. Met. Mater. Int. 10(6), 575 (2004).CrossRefGoogle Scholar
38.Kim, Y.C., Lee, J.C., Cha, P.R., Ahn, J.P., and Fleury, E.: Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses. Mater. Sci. Eng. A 437, 248 (2006).CrossRefGoogle Scholar
39.Ou, X., Zhang, G.Q., Xu, X., Wang, L.N., Liu, J.F., and Jiang, J.Z.: Crystallization kinetics in Cu35Ag15Zr45Al5 metallic glass. J. Alloy. Comp. 441, 181 (2007).CrossRefGoogle Scholar
40.Park, S.O., Lee, J.C., Kim, Y.C., Fleury, E., Sung, D.S., and Kim, D.H.: Crystallization kinetics of the Cu43Zr43Al7Ag7 amorphous alloy. Mater. Sci. Eng. A 449451, 561 (2007).CrossRefGoogle Scholar
41.Zhao, Y., Kou, S., Suo, H., Wang, R., and Ding, Y.: Overheating effects on thermal stability and mechanical properties of Cu36Zr48Al8Ag8 bulk metallic glass. Mater. Des. 31, 1029 (2010).CrossRefGoogle Scholar
42.Zhang, Q., Zhang, W., Xie, G., and Inoue, A.: Formation of a phase separating bulk metallic glass in Cu40Zr40Al10Ag10 alloy. Mater. Sci. Eng. B 148, 97 (2008).CrossRefGoogle Scholar
43.Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scr. Mater. 53, 165 (2005).CrossRefGoogle Scholar
44.Koval, Y.N., Firstov, G.S., and Kotko, A.V.: Martensite transformation and shape memory effect in ZrCu intermetallic compound. Scr. Mater. 27, 1611 (1992).CrossRefGoogle Scholar
45.Pauly, S., Liu, G., Wang, G., Kühn, U., Mattern, N., and Eckert, J.: Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 57, 5445 (2009).CrossRefGoogle Scholar
46.Jiang, F., Zhang, Z.B., He, L., Sun, J., Zhang, H., and Zhang, Z.F.: Effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composite. J. Mater. Res. 21(10), 2638 (2006).CrossRefGoogle Scholar
47.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).CrossRefGoogle ScholarPubMed
48.Zeng, K.J., Hämäläinen, M., and Lukas, H.L.: A new thermodynamic description of the Cu-Zr system. J. Phase Equilibria 15, 577 (1994).CrossRefGoogle Scholar
49.Yamamoto, T., Yokoyama, Y., Ichitsubo, T., Kimura, H., Matsubara, E., and Inoue, A.: Precipitation of the ZrCu B2 phase in Zr50Cu50-xAlx (x = 0, 4, 6) metallic glasses by rapidly heating and cooling. J. Mater. Res. 25(4), 793 (2010).CrossRefGoogle Scholar
50.Das, J., Pauly, S., Boström, M., Durst, K., Göken, M., and Eckert, J.: Designing bulk metallic glass and glass matrix composites in martensitic alloys. J. Alloy. Comp. 483(1–2), 97 (2009).CrossRefGoogle Scholar
51.Turnbull, D.: Metastable structures in metallurgy. Metall. Trans. B 12, 217 (1981).CrossRefGoogle Scholar
52.Yu, P., Bai, H.Y., Tang, M.B., and Wang, W.L.: Excellent glass forming ability in simple Cu50Zr50 based alloys. J. Non-Cryst. Solids 351, 1328 (2005).CrossRefGoogle Scholar
53.Luzgin, D.V.L., Georgarakis, K., Yavari, A.R., Vaughan, G., Xie, G., and Inoue, A.: Effect of Ag additions on local structure of Cu-Zr glassy alloy. J. Mater. Res. 24(1), 274 (2009).CrossRefGoogle Scholar
54.Lu, Z.P., Tan, H., Li, Y., and Ng, S.C.: The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scr. Mater. 42, 667 (2000).CrossRefGoogle Scholar
55.Wang, F.E.: Bonding Theory for Metals and Alloys, 1st ed. (Elsevier, Amsterdam, 2005), pp. 1152.Google Scholar
56.He, Q., Cheng, Y., Ma, E., and Xu, J.: Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 59(1), 202 (2010).CrossRefGoogle Scholar
57.Qiu, F., Shen, P., Liu, T., Lin, Q., and Jiang, Q.: Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics. J. Alloy. Comp. 491, 354 (2010).CrossRefGoogle Scholar
58.Hume-Rothery, W.H.: Phase Stability in Metals and Alloys, edited by Rudmar, P.S., Stringer, J., and Jaffee, R.I. (McGraw Hill, New York, 1967), pp. 323.Google Scholar
60.Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy systems—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).CrossRefGoogle Scholar
61.Wang, Q., Wang, Y.M., Qiang, J.B., Zhang, X.F.: Shek, C.H., and Dong, C.: Composition optimisation of the Cu-based Cu-Zr-Al alloys. Intermetallics 12, 1229 (2004).CrossRefGoogle Scholar
62.Fang, S., Xiao, X., Xia, L., Wang, Q., Li, W., and Dong, Y.: Effects of bond parameters on the widths of supercooled liquid regions of ferrous BMGs. Intermetallics 12, 1069 (2004).CrossRefGoogle Scholar
63.Yu, H.J., Fu, H., Wang, Z.G., and Zu, X.T.: Effect of Ge addition on the martensitic transformation temperatures of Ni-Fe-Ga alloys. Mater. Sci. Eng. A 507, 37 (2009).CrossRefGoogle Scholar
64.Chen, X. Q., Lu, X., Wang, D. Y., and Qin, Z. X.: The effect of Co-doping on martensitic transformation temperatures in Ni-Mn-Ga Heusler alloys. Smart Mater. Struct. 17, 065030 (1–5) (2008).CrossRefGoogle Scholar
65.Koval, Y.N., Firstov, G.S., Delaey, L., and Humbeeck, J.V.: The influence of Ni and Ti on the martensitic transformation and shape memory effect of the intermetallic compound. Scr. Metall. Mater. 31(7), 799 (1994).CrossRefGoogle Scholar