Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T05:43:37.807Z Has data issue: false hasContentIssue false

Dynamic convection-driven thermal gradient chemical vapor infiltration

Published online by Cambridge University Press:  31 January 2011

John Y. Ofori
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, New York 14627
Stratis V. Sotirchos*
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, New York 14627
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

The operation of the process of chemical vapor infiltration using a combination of pressure pulsing and thermal gradients is theoretically investigated in this study. Past studies had shown that pulsing of the pressure in the gas phase can lead to a dramatic reduction of the density gradients in the densifying structure, in comparison to those seen in isobaric diffusion-driven Pinfiltration, with significant gradients present only in the vicinity of the external surface of the preforms. Using a detailed model for chemical vapor infiltration under unsteady nonisothermal conditions, we show that temperature gradients, created in our study through microwave heating, can, in conjunction with pressure pulsing, eliminate the density gradients in the final product. Moreover, appropriate tuning of the operational parameters can lead to a situation where densification proceeds from the interior of the preform toward the external surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Savage, G., Carbon-Carbon Composites (Chapman and Hall, London, 1993).CrossRefGoogle Scholar
2. Chawla, K. K., Ceramic Matrix Composites (Chapman and Hall, London, 1993).Google Scholar
3. Naslain, R., in Ceramic Matrix Composites, edited by Warren, R. (Chapman and Hall, Glasgow, 1992).Google Scholar
4. Sugiyama, K. and Kurisu, Y., J. Mater. Sci. 27, 40704074 (1992).CrossRefGoogle Scholar
5. Sotirchos, S. V., AIChE J. 37, 13651378 (1991).CrossRefGoogle Scholar
6. Sotirchos, S. V., in High Temperature Ceramic Matrix Composites, edited by Naslain, R., Lamon, J., and Doumeingts, D. (6th European Conference on Composite Composite Materials, Bordeaux, France, 1993).Google Scholar
7. Sutton, W. H., A. Ceram. Soc. Bull. 68, 376386 (1989).Google Scholar
8. Gupta, D. and Evans, J. W., J. Mater. Res. 6, 810818 (1991).CrossRefGoogle Scholar
9. Gupta, D. and Evans, J. W., J. Am. Ceram. Soc. 76, 19241929 (1993).Google Scholar
10. Morell, J. I., Economou, D. J., and Amundson, N. R., J. Mater. Res. 8, 10571067 (1993).CrossRefGoogle Scholar
11. Devlin, D. J., Currier, R. P., Barbero, R. S., and Espinoza, B. F., Ceram. Eng. Sci. Proc. 14 (9/10), 761767 (1993).CrossRefGoogle Scholar
12. Spotz, M. S., Skamser, D. J., Day, P. S., Jennings, H. M., and Johnson, D. L., Proc. 17th Annual Conference on Advanced Composites and Advanced Ceramic Materials, Cocoa Beach, FL (1993), pp. 753760.Google Scholar
13. Sugiyama, K. and Ohzawa, Y., J. Mater. Sci. 25, 45114517 (1990).CrossRefGoogle Scholar
14. Mason, E. A. and Malinauskas, A. P., Gas Transport in Porous Media: The Dusty-Gas Model (Elsevier, New York, 1983).Google Scholar
15. Jackson, R., Transport in Porous Catalysts (Elsevier, New York, 1977).Google Scholar
16. Sotirchos, S. V., AIChE J. 35, 19531961 (1989).CrossRefGoogle Scholar
17. Burganos, V. N. and Sotirchos, S. V., Chem. Eng. Sci. 44, 24512462 (1989).CrossRefGoogle Scholar
18. Tomadakis, M. M. and Sotirchos, S. V., J. Chem. Phys. 98, 616626 (1993a).CrossRefGoogle Scholar
19. Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
20. Tomadakis, M. M. and Sotirchos, S. V., AIChE J. 39, 397412 (1993b).CrossRefGoogle Scholar
21. Reid, R. C. and Sherwood, T. K., The Properties of Gases and Liquids (McGraw-Hill, New York, 1966).Google Scholar
22. Balanis, C. A., Advanced Engineering Electromagnetics (John Wiley, New York, 1989).Google Scholar
23. Ayappa, K. G., Davis, H. T., Davis, E. A., and Gordon, J., AIChE J. 37, 313322 (1991).CrossRefGoogle Scholar
24. Devlin, D. J., Currier, R. P., Barbero, R. S., Espinoza, B. F., and Elliot, N., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), pp. 245250.Google Scholar
25. Janney, M. A., Kimrey, H. D., Kiggans, J.O., in Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Iskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), pp. 173185.Google Scholar
26. Treybal, R. E., Mass Transfer Operations (McGraw-Hill, Tokyo, 1981).Google Scholar
27. Papasouliotis, G. D. and Sotirchos, S. V., in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by Mountziaris, T. J., Paz-Pujatt, G. R., Smith, F. T. J., and Westmoreland, P. R. (Mater. Res. Soc. Symp. Proc. 334, Pittsburgh, PA, 1994), pp. 111116.Google Scholar
28. Brennfleck, K., Fitzer, E., Schoch, G., and Dietrich, M., in Proc. Ninth Int. Conf. on CVD, edited by Robinson, M., van den Brekel, C. H. J., Cullen, G. W., Blocher, J.M., RaiChoudhury, P. (The Electrochem. Soc., Pennington, NJ, 1984), pp. 649662.Google Scholar
29. DeBoor, C., A Practical Guide to Splines (Springer-Verlag, New York, 1978).CrossRefGoogle Scholar
30. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, NJ, 1971).Google Scholar
31. Fieldhouse, I. B., Hedge, J.C., Lang, J.I., and Waterman, T. E., Thermal Properties of High Temperature Materials, Armour Research Foundation, WADC-TR-57-487, AD-150954, Contract AF-33(616)-3701 (1958).Google Scholar
32. Refractory Ceramics for Aerospace, edited by Hague, J.R., Lynch, J.F., Rudnick, A., Holden, F. C., and Duckworth, W.H. (ACS, Columbus, OH, 1960).Google Scholar
33. Slack, G. A., J. Phys. Chem. Solids 34, 321335 (1973).CrossRefGoogle Scholar
34. Tawil, M., Bentsen, L. D., Baskaran, S., and Hasselman, D. P. H., J. Mater. Sci. 20, 32013212 (1985).CrossRefGoogle Scholar
35. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena (John Wiley, New York, 1960).Google Scholar
36. Wilke, C. R., J. Chem. Phys. 18, 517519 (1950).CrossRefGoogle Scholar
37. Svehla, R. A., NASA Tech. Rept. R-132, Lewis Research Center, Cleveland, OH (1962).Google Scholar