Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T04:06:34.613Z Has data issue: false hasContentIssue false

Double resonance Raman scattering process in 2D materials

Published online by Cambridge University Press:  23 May 2019

Rafael N. Gontijo
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
Geovani C. Resende
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
Cristiano Fantini
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
Bruno R. Carvalho*
Affiliation:
Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Raman spectroscopy is a fundamental tool for the characterization of two-dimensional materials. It provides insights into the electronic and vibrational properties of these materials and is particularly rich in features when the incident laser energy approaches the electronic energy transition of the material. Among these features, the double resonance Raman process provides important information on the electron, phonon, and electron–phonon properties. It was on the study of carbon-related materials that the double resonance bands sparkled showing their potential and, since then, have been deeply searched in the study of novel 2D materials. Here, the authors review the double resonance Raman process in 2D materials focusing on graphene and semiconducting MoS2 highlighting the origin of the bands mediated by the two-phonon and phonon–defect processes. The authors discuss the observed properties of the double resonance bands and compare the processes for graphene and MoS2 to find guiding principles for the appearance of double resonance bands. The authors also discuss the new findings of the intervalley scattering process in transition metal dichalcogenides. A brief discussion of the defect-induced bands in both materials is also presented.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1 (2006).CrossRefGoogle ScholarPubMed
Malard, L.M.M., Pimenta, M.A.A., Dresselhaus, G., and Dresselhaus, M.S.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).CrossRefGoogle Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle ScholarPubMed
Ribeiro, H.B., Pimenta, M.A., and de Matos, C.J.S.: Raman spectroscopy in black phosphorus. J. Raman Spectrosc. 49, 76 (2018).CrossRefGoogle Scholar
Reich, S., Ferrari, A.C., Arenal, R., Loiseau, A., Bello, I., and Robertson, J.: Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 71, 205201 (2005).CrossRefGoogle Scholar
Cai, Q., Scullion, D., Falin, A., Watanabe, K., Taniguchi, T., Chen, Y., Santos, E.J.G., and Li, L.H.: Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 9, 3059 (2017).CrossRefGoogle ScholarPubMed
Attaccalite, C., Wirtz, L., Marini, A., and Rubio, A.: Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible. Sci. Rep. 3, 2698 (2013).CrossRefGoogle ScholarPubMed
Pimenta, M.A., del Corro, E., Carvalho, B.R., Fantini, C., and Malard, L.M.: Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Acc. Chem. Res. 48, 41 (2015).CrossRefGoogle ScholarPubMed
Saito, R., Tatsumi, Y., Huang, S., Ling, X., and Dresselhaus, M.S.: Raman spectroscopy of transition metal dichalcogenides. J. Phys.: Condens. Matter 28, 353002 (2016).Google ScholarPubMed
Lui, C.H., Ye, Z., Ji, C., Chiu, K-C., Chou, C-T., Andersen, T.I., Means-Shively, C., Anderson, H., Wu, J-M., Kidd, T., Lee, Y-H., and He, R.: Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).CrossRefGoogle Scholar
Sun, L., Yan, J., Zhan, D., Liu, L., Hu, H., Li, H., Tay, B.K., Kuo, J-L.L., Huang, C-C.C., Hewak, D.W., Lee, P.S., and Shen, Z.X.: Spin–orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111, 126801 (2013).CrossRefGoogle ScholarPubMed
Carvalho, B.R., Malard, L.M., Alves, J.M., Fantini, C., and Pimenta, M.A.: Symmetry–dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).CrossRefGoogle ScholarPubMed
del Corro, E., Botello-Méndez, A., Gillet, Y., Elias, A.L., Terrones, H., Feng, S., Fantini, C., Rhodes, D., Pradhan, N., Balicas, L., Gonze, X., Charlier, J-C., Terrones, M., and Pimenta, M.A.: Atypical exciton–phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16, 2363 (2016).CrossRefGoogle ScholarPubMed
Soubelet, P., Bruchhausen, A.E., Fainstein, A., Nogajewski, K., and Faugeras, C.: Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B 93, 155407 (2016).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695 (2010).CrossRefGoogle ScholarPubMed
Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).CrossRefGoogle Scholar
Zhang, X., Qiao, X-F., Shi, W., Wu, J-B., Jiang, D-S., and Tan, P-H.: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757 (2015).CrossRefGoogle ScholarPubMed
Molina-Sánchez, A., Hummer, K., and Wirtz, L.: Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 70, 554 (2015).CrossRefGoogle Scholar
Puretzky, A.A., Liang, L., Li, X., Xiao, K., Wang, K., Mahjouri-Samani, M., Basile, L., Idrobo, J.C., Sumpter, B.G., Meunier, V., and Geohegan, D.B.: Low-frequency Raman fingerprints of two–dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333 (2015).CrossRefGoogle ScholarPubMed
Kim, K., Lee, J.U., Nam, D., and Cheong, H.: Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano 10, 8113 (2016).CrossRefGoogle ScholarPubMed
Du, L., Liao, M., Tang, J., Zhang, Q., Yu, H., Yang, R., Watanabe, K., Taniguchi, T., Shi, D., Zhang, Q., and Zhang, G.: Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Phys. Rev. B 97, 235145 (2018).CrossRefGoogle Scholar
Bilgin, I., Raeliarijaona, A.S., Lucking, M.C., Hodge, S.C., Mohite, A.D., de Luna Bugallo, A., Terrones, H., and Kar, S.: Resonant Raman and exciton coupling in high-quality single crystals of atomically thin molybdenum diselenide grown by vapor–phase chalcogenization. ACS Nano 12, 740 (2018).CrossRefGoogle ScholarPubMed
Chiu, M-H., Li, M-Y., Zhang, W., Hsu, W-T., Chang, W-H., Terrones, M., Terrones, H., and Li, L-J.: Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649 (2014).CrossRefGoogle ScholarPubMed
Shim, G.W., Yoo, K., Seo, S-B., Shin, J., Jung, D.Y., Kang, I-S., Ahn, C.W., Cho, B.J., and Choi, S-Y.: Large–area single–layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655 (2014).CrossRefGoogle ScholarPubMed
Gong, Y., Lei, S., Ye, G., Li, B., He, Y., Keyshar, K., Zhang, X., Wang, Q., Lou, J., Liu, Z., Vajtai, R., Zhou, W., and Ajayan, P.M.: Two–step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135 (2015).CrossRefGoogle ScholarPubMed
Zhang, K., Zhang, T., Cheng, G., Li, T., Wang, S., Wei, W., Zhou, X., Yu, W., Sun, Y., Wang, P., Zhang, D., Zeng, C., Wang, X., Hu, W., Fan, H.J., Shen, G., Chen, X., Duan, X., Chang, K., and Dai, N.: Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852 (2016).CrossRefGoogle ScholarPubMed
Eliel, G.S.N., Moutinho, M.V.O., Gadelha, A.C., Righi, A., Campos, L.C., Ribeiro, H.B., Chiu, P-W., Watanabe, K., Taniguchi, T., Puech, P., Paillet, M., Michel, T., Venezuela, P., and Pimenta, M.A.: Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).CrossRefGoogle ScholarPubMed
Lin, M-L., Tan, Q-H., Wu, J-B., Chen, X-S., Wang, J-H., Pan, Y-H., Zhang, X., Cong, X., Zhang, J., Ji, W., Hu, P-A., Liu, K-H., and Tan, P-H.: Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770 (2018).CrossRefGoogle ScholarPubMed
Miller, R.C., Kleinman, D.A., and Gossard, A.C.: Observation of doubly resonant LO-phonon Raman scattering with GaAs-AlxGa1–x As quantum wells. Solid State Commun. 60, 213 (1986).CrossRefGoogle Scholar
Cerdeira, F., Anastassakis, E., Kauschke, W., and Cardona, M.: Stress-induced doubly resonant Raman scattering in GaAs. Phys. Rev. Lett. 57, 3209 (1986).CrossRefGoogle Scholar
Alexandrou, A., Cardona, M., and Ploog, K.: Doubly and triply resonant raman scattering by LO phonons in GaAs/AlAs superlattices. Phys. Rev. B 38, 2196 (1988).CrossRefGoogle ScholarPubMed
Gubarev, S.I., Ruf, T., and Cardona, M.: Doubly resonant Raman scattering in the semimagnetic semiconductor Cd0.95Mn0.05Te. Phys. Rev. B 43, 1551 (1991).CrossRefGoogle ScholarPubMed
Kupčić, I.: Triple-resonant two-phonon Raman scattering in graphene. J. Raman Spectrosc. 43, 1 (2012).CrossRefGoogle Scholar
Yoon, D., Son, Y.W., and Cheong, H.: Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 106, 1 (2011).CrossRefGoogle ScholarPubMed
Venezuela, P., Lazzeri, M., and Mauri, F.: Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect–induced and two-phonon bands. Phys. Rev. B 84, 1 (2011).CrossRefGoogle Scholar
Thomsen, C. and Reich, S.: Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).CrossRefGoogle Scholar
Grüneis, A., Saito, R., Kimura, T., Cançado, L.G., Pimenta, M.A., Jorio, A.G., Souza Filho, A.G., Dresselhaus, G., and Dresselhaus, M.S.: Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B 65, 1 (2002).CrossRefGoogle Scholar
Reich, S. and Thomsen, C.: Raman spectroscopy of graphite. Philos. Trans. R. Soc., A 362, 2271 (2004).CrossRefGoogle ScholarPubMed
Maultzsch, J., Reich, S., and Thomsen, C.: Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 70, 155403 (2004).CrossRefGoogle Scholar
Cançado, L.G., Pimenta, M.A., Neves, B.R.A., Dantas, M.S.S., and Jorio, A.: Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 5 (2004).CrossRefGoogle ScholarPubMed
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Mafra, D.L., Samsonidze, G., Malard, L.M., Elias, D.C., Brant, J.C., Plentz, F., Alves, E.S., and Pimenta, M.A.: Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 76, 233407 (2007).CrossRefGoogle Scholar
Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., and Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).CrossRefGoogle ScholarPubMed
Gołasa, K., Grzeszczyk, M., Korona, K.P., Bożek, R., Binder, J., Szczytko, J., Wysmołek, A., and Babiński, A.: Optical properties of molybdenum disulfide (MoS2). Acta Phys. Pol., A 124, 849 (2013).CrossRefGoogle Scholar
Berkdemir, A., Gutiérrez, H.R., Botello-Méndez, A.R., Perea-López, N., Elías, A.L., Chia, C-I., Wang, B., Crespi, V.H., López-Urías, F., Charlier, J-C., Terrones, H., and Terrones, M.: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).CrossRefGoogle Scholar
Mitioglu, A.A., Plochocka, P., Deligeorgis, G., Anghel, S., Kulyuk, L., and Maude, D.K.: Second order resonant Raman scattering in single layer tungsten disulfide (WS2). Phys. Rev. B 89, 245442 (2014).CrossRefGoogle Scholar
Liu, H-L., Guo, H., Yang, T., Zhang, Z., Kumamoto, Y., Shen, C-C., Hsu, Y-T., Li, L-J., Saito, R., and Kawata, S.: Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering. Phys. Chem. Chem. Phys. 17, 14561 (2015).CrossRefGoogle ScholarPubMed
Guo, H., Yang, T., Yamamoto, M., Zhou, L., Ishikawa, R., Ueno, K., Tsukagoshi, K., Zhang, Z., Dresselhaus, M.S., and Saito, R.: Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015).CrossRefGoogle Scholar
Shi, W., Lin, M-L., Tan, Q-H., Qiao, X-F., Zhang, J., and Tan, P-H.: Raman and photoluminescence spectra of two–dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 3, 025016 (2016).CrossRefGoogle Scholar
Carvalho, B.R., Wang, Y., Mignuzzi, S., Roy, D., Terrones, M., Fantini, C., Crespi, V.H., Malard, L.M., and Pimenta, M.A.: Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by doubley-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).CrossRefGoogle ScholarPubMed
Qian, Q., Zhang, Z., and Chen, K.J.: Layer-dependent second-order Raman intensity of MoS2 and WS2: Influence of intervalley scattering. Phys. Rev. B 97, 165409 (2018).CrossRefGoogle Scholar
Kutrowska-Girzycka, J., Jadczak, J., and Bryja, L.: The study of dispersive ‘b’-mode in monolayer MoS2 in temperature dependent resonant Raman scattering experiments. Solid State Commun. 275, 25 (2018).CrossRefGoogle Scholar
Sekine, T., Uchinokura, K., Nakashizu, T., Matsuura, E., and Yoshizaki, R.: Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 53, 811 (1984).CrossRefGoogle Scholar
Stacy, A.M.M. and Hodul, D.T.T.: Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 46, 405 (1985).CrossRefGoogle Scholar
Sourisseau, C., Cruege, F., Fouassier, M., and Alba, M.: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chem. Phys. 150, 281 (1991).CrossRefGoogle Scholar
McDevitt, N.T., Zabinski, J.S., Donley, M.S., and Bultman, J.E.: Disorder-induced low-frequency Raman band observed in deposited MoS2 films. Appl. Spectrosc. 48, 733 (1994).CrossRefGoogle Scholar
Frey, G.L., Tenne, R., Matthews, M.J., Dresselhaus, M.S., and Dresselhaus, G.: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883 (1999).CrossRefGoogle Scholar
Livneh, T. and Sterer, E.: Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81, 195209 (2010).CrossRefGoogle Scholar
Lin, Z., Carvalho, B.R., Kahn, E., Lv, R., Rao, R., Terrones, H., Pimenta, M.A., and Terrones, M.: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016).CrossRefGoogle Scholar
Hu, Z., Wu, Z., Han, C., He, J., Ni, Z., and Chen, W.: Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47, 3100 (2018).CrossRefGoogle ScholarPubMed
Cardona, M. and Merlin, R.: Light Scattering in Solids I., Vol. 8 (Springer, Berlin, Heidelberg, 1983).CrossRefGoogle Scholar
Mignuzzi, S., Pollard, A.J., Bonini, N., Brennan, B., Gilmore, I.S., Pimenta, M.A., Richards, D., and Roy, D.: Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).CrossRefGoogle Scholar
Liu, H.L., Siregar, S., Hasdeo, E.H., Kumamoto, Y., Shen, C.C., Cheng, C.C., Li, L.J., Saito, R., and Kawata, S.: Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon 81, 807 (2015).CrossRefGoogle Scholar
Malard, L.M., Mafra, D.L., Guimarães, M.H.D., Mazzoni, M.S.C., and Jorio, A.: Group theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2008).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).CrossRefGoogle ScholarPubMed
Reich, S., Maultzsch, J., Thomsen, C., and Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 1 (2002).CrossRefGoogle Scholar
Wehling, T.O., Black-Schaffer, A.M., and Balatsky, A.V.: Dirac materials. Adv. Phys. 63, 1 (2014).CrossRefGoogle Scholar
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Mak, K.F., Ju, L., Wang, F., and Heinz, T.F.: Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341 (2012).CrossRefGoogle Scholar
Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).CrossRefGoogle Scholar
Martins Ferreira, E.H., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A., and Jorio, A.: Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 82, 125429 (2010).CrossRefGoogle Scholar
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., and Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925 (2012).CrossRefGoogle ScholarPubMed
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., and Robertson, J.: Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 1 (2004).CrossRefGoogle Scholar
May, P., Lazzeri, M., Venezuela, P., Herziger, F., Callsen, G., Reparaz, J.S., Hoffmann, A., Mauri, F., and Maultzsch, J.: Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Phys. Rev. B 87, 075402 (2013).CrossRefGoogle Scholar
Basko, D.M., Piscanec, S., and Ferrari, A.C.: Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).CrossRefGoogle Scholar
Bernard, S., Whiteway, E., Yu, V., Austing, D.G., and Hilke, M.: Experimental phonon band structure of graphene using C12 and C13 isotopes. Phys. Rev. B 86, 085409 (2011).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C-Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).CrossRefGoogle ScholarPubMed
Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V.H., Terrones, H., and Terrones, M.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447 (2013).CrossRefGoogle ScholarPubMed
Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P-H., and Eda, G.: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791 (2013).CrossRefGoogle ScholarPubMed
Hill, H.M., Rigosi, A.F., Roquelet, C., Chernikov, A., Berkelbach, T.C., Reichman, D.R., Hybertsen, M.S., Brus, L.E., and Heinz, T.F.: Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992 (2015).CrossRefGoogle ScholarPubMed
Frisenda, R., Niu, Y., Gant, P., Molina-Mendoza, A.J., Schmidt, R., Bratschitsch, R., Liu, J., Fu, L., Dumcenco, D., Kis, A., De Lara, D.P., and Castellanos-Gomez, A.: Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D: Appl. Phys. 50, 074002 (2017).CrossRefGoogle Scholar
Mak, K.F. and Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216 (2016).CrossRefGoogle Scholar
Mak, K.F., McGill, K.L., Park, J., and McEuen, P.L.: Valleytronics. The Valley Hall effect in MoS2 transistors. Science 344, 1489 (2014).CrossRefGoogle Scholar
Mai, C., Barrette, A., Yu, Y., Semenov, Y.G., Kim, K.W., Cao, L., and Gundogdu, K.: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202 (2014).CrossRefGoogle ScholarPubMed
Baugher, B.W.H., Churchill, H.O.H., Yang, Y., and Jarillo-Herrero, P.: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262 (2014).CrossRefGoogle Scholar
Novoselov, K.S., Mishchenko, A., Carvalho, A., and Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).CrossRefGoogle Scholar
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).CrossRefGoogle ScholarPubMed
Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., Pizzi, G., and Marzari, N.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).CrossRefGoogle ScholarPubMed
Gusakova, J., Wang, X., Shiau, L.L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V., Gusakov, V., and Tay, B.K.: Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ–2e method). Phys. Status Solidi 214, 1700218 (2017).CrossRefGoogle Scholar
Wilson, J.A.A. and Yoffe, A.D.D.: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
Qiu, D.Y., da Jornada, F.H., and Louie, S.G.: Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).CrossRefGoogle ScholarPubMed
Zibouche, N., Kuc, A., Musfeldt, J., and Heine, T.: Transition-metal dichalcogenides for spintronic applications. Ann. Phys. 526, 395 (2014).CrossRefGoogle Scholar
Gaur, A.P.S., Sahoo, S., Scott, J.F., and Katiyar, R.S.: Electron–phonon interaction and double–resonance Raman studies in monolayer WS2. J. Phys. Chem. C 119, 5146 (2015).CrossRefGoogle Scholar
Chen, J.M. and Wang, C.S.: Second order Raman spectrum of MoS2. Solid State Commun. 14, 857 (1974).CrossRefGoogle Scholar
Livneh, T. and Spanier, J.E.: A comprehensive multiphonon spectral analysis in MoS2. 2D Mater. 2, 035003 (2015).CrossRefGoogle Scholar
Gillet, Y., Kontur, S., Giantomassi, M., Draxl, C., and Gonze, X.: Ab initio approach to second-order resonant Raman scattering including exciton–phonon interaction. Sci. Rep. 7, 7344 (2017).CrossRefGoogle ScholarPubMed
Wang, G., Glazov, M., Robert, C., Amand, T., Marie, X., and Urbaszek, B.: Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 115, 1 (2015).CrossRefGoogle Scholar
Liu, H-L., Yang, T., Tatsumi, Y., Zhang, Y., Dong, B., Guo, H., Zhang, Z., Kumamoto, Y., Li, M-Y., Li, L-J., Saito, R., and Kawata, S.: Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Sci. Rep. 8, 11398 (2018).CrossRefGoogle ScholarPubMed
Gołasa, K., Grzeszczyk, M., Leszczyński, P., Faugeras, C., Nicolet, A.A.L., Wysmołek, A., Potemski, M., and Babiński, A.: Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 104, 092106 (2014).CrossRefGoogle Scholar
Zeng, H., Dai, J., Yao, W., Xiao, D., and Cui, X.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012).CrossRefGoogle ScholarPubMed
Mak, K.F., He, K., Shan, J., and Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494 (2012).CrossRefGoogle ScholarPubMed
Kioseoglou, G., Hanbicki, A.T., Currie, M., Friedman, A.L., and Jonker, B.T.: Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 6, 25041 (2016).CrossRefGoogle ScholarPubMed
Dey, P., Paul, J., Wang, Z., Stevens, C.E., Liu, C., Romero, A.H., Shan, J., Hilton, D.J., and Karaiskaj, D.: Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron–phonon interactions. Phys. Rev. Lett. 116, 127402 (2016).CrossRefGoogle ScholarPubMed
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., and Idrobo, J.C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615 (2013).CrossRefGoogle ScholarPubMed
Wu, Z., Luo, Z., Shen, Y., Zhao, W., Wang, W., Nan, H., Guo, X., Sun, L., Wang, X., You, Y., and Ni, Z.: Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 9, 3622 (2016).CrossRefGoogle Scholar
Parkin, W.M., Balan, A., Liang, L., Das, P.M., Lamparski, M., Naylor, C.H., Rodríguez-Manzo, J.A., Johnson, A.T.C., Meunier, V., and Drndić, M.: Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10, 4134 (2016).CrossRefGoogle ScholarPubMed
Wu, Z., Zhao, W., Jiang, J., Zheng, T., You, Y., Lu, J., and Ni, Z.: Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 121, 12294 (2017).CrossRefGoogle Scholar
Shi, W., Zhang, X., Li, X-L., Qiao, X-F., Wu, J-B., Zhang, J., and Tan, P-H.: Phonon confinement effect in two-dimensional nanocrystallites of monolayer MoS2 to probe phonon dispersion trends away from brillouin-zone center. Chin. Phys. Lett. 33, 057801 (2016).CrossRefGoogle Scholar
Komsa, H-P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., and Krasheninnikov, A.V.: Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).CrossRefGoogle ScholarPubMed
Lu, J., Carvalho, A., Chan, X.K., Liu, H., Liu, B., Tok, E.S., Loh, K.P., Castro Neto, A.H., and Sow, C.H.: Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524 (2015).CrossRefGoogle ScholarPubMed
Fang, H., Tosun, M., Seol, G., Chang, T.C., Takei, K., Guo, J., and Javey, A.: Degenerate n-doping of few–layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991 (2013).CrossRefGoogle ScholarPubMed
Dolui, K., Rungger, I., Das Pemmaraju, C., and Sanvito, S.: Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 88, 1 (2013).CrossRefGoogle Scholar
Saigal, N., Wielert, I., Čapeta, D., Vujičić, N., V Senkovskiy, B., Hell, M., Kralj, M., and Grüneis, A.: Effect of lithium doping on the optical properties of monolayer MoS2. Appl. Phys. Lett. 112, 121902 (2018).CrossRefGoogle Scholar
Asari, E., Kamioka, I., Nakamura, K.G., Kawabe, T., Lewis, W.A., and Kitajima, M.: Lattice disordering in graphite under rare-gas ion irradiation studied by Raman spectroscopy. Phys. Rev. B 49, 1011 (1994).CrossRefGoogle ScholarPubMed
Richter, H., Wang, Z.P., and Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
Campbell, I.H. and Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).CrossRefGoogle Scholar
Ishioka, K., Nakamura, K.G., and Kitajima, M.: Phonon confinement in GaAs by defect formation studied by real-time Raman measurements. Phys. Rev. B 52, 2539 (1995).CrossRefGoogle ScholarPubMed
Lee, C., Jeong, B.G., Yun, S.J., Lee, Y.H., Lee, S.M., and Jeong, M.S.: Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering. ACS Nano 12, 9982 (2018).CrossRefGoogle ScholarPubMed
McCreary, A., Simpson, J.R., Wang, Y., Rhodes, D., Fujisawa, K., Balicas, L., Dubey, M., Crespi, V.H., Terrones, M., and Hight Walker, A.R.: Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 17, 5897 (2017).CrossRefGoogle ScholarPubMed
Wolverson, D., Crampin, S., Kazemi, A.S., Ilie, A., and Bending, S.J.: Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 8, 11154 (2014).CrossRefGoogle ScholarPubMed
Wang, X., Mao, N., Luo, W., Kitadai, H., and Ling, X.: Anomalous phonon modes in black phosphorus revealed by resonant Raman scattering. J. Phys. Chem. Lett. 9, 2830 (2018).CrossRefGoogle ScholarPubMed
Favron, A., Goudreault, F.A., Gosselin, V., Groulx, J., Côté, M., Leonelli, R., Germain, J.F., Phaneuf-L’Heureux, A.L., Francoeur, S., and Martel, R.: Second-order Raman scattering in exfoliated black phosphorus. Nano Lett. 18, 1018 (2018).CrossRefGoogle ScholarPubMed