Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T03:26:39.640Z Has data issue: false hasContentIssue false

Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements

Published online by Cambridge University Press:  03 March 2011

Albert W. Marsman*
Affiliation:
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
Cees M. Hart
Affiliation:
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
Gerwin H. Gelinck
Affiliation:
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
Tom C.T. Geuns
Affiliation:
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
Dagobert M. de Leeuw
Affiliation:
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate polymeric electrically programmable read-only-memory elements based on camphorsulfonic-acid–doped polyaniline lines. Their working mechanism relies on irreversible reduction of the electrical conductivity by Joule heating like electrical safety fuses. The heating power is supplied electrically. The critical power required to “blow up” the fuse is strongly reduced by notches. The influence of the notch design can be predicted reasonably well using a simple thermal model. The critical power becomes less than 1 mW for fuses with notches narrower than 2 μm. This power can be delivered by organic transistors already at modest voltages, opening the way of integration of these memory elements in all-polymer circuits.

Type
Articles—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brown, A.R., Pomp, A., Hart, C.M. and de Leeuw, D.M.: Science 270, 972 (1995).CrossRefGoogle Scholar
2.Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M. and de Leeuw, D.M.: Appl. Phys. Lett. 73, 108 (1998).CrossRefGoogle Scholar
3.Gelinck, G.H., Geuns, T.C.T. and de Leeuw, D.M.: Appl. Phys. Lett. 77, 1487 (2000).CrossRefGoogle Scholar
4.Touwslager, F.J., Willard, N.P. and de Leeuw, D.M.: Appl. Phys. Lett. 81, 4556 (2002).CrossRefGoogle Scholar
5.Touwslager, F.J., Willard, N.P. and de Leeuw, D.M.: Synth. Met. 135, 53 (2003).CrossRefGoogle Scholar
6.Halik, M., Klauk, H., Zschieschang, U., Kriem, T., Schmidt, G., Radlik, W. and Wussow, K.: Appl. Phys. Lett. 81, 289 (2002).CrossRefGoogle Scholar
7.Holman, J.P.Heat transfer, 8th ed. (McGraw-Hill, Inc. 1997).Google Scholar