Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T09:08:47.270Z Has data issue: false hasContentIssue false

Distortion of the oxygen sublattice in pure cubic-ZrO2

Published online by Cambridge University Press:  03 March 2011

C.M. Wang*
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
S. Azad
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
S. Thevuthasan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
V. Shutthanandan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
D.E. McCready
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
C.H.F. Peden
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multilayer films of pure ZrO2 and CeO2 were grown using molecular beam epitaxy on a yttria-stabilized zirconia (YSZ) substrate. Distinctive forbidden diffraction spots of (odd, odd, even) type were observed on the selected-area electron-diffraction patterns of the film. Dark-field imaging clearly revealed that these forbidden diffraction spots were solely due to the ZrO2 layers. Comparison of the electron diffraction pattern with that simulated by dynamical calculations suggest that the pure ZrO2 layers possess a cubic structure of space with the group P4 3m oxygen sublattice being displaced diagonally, rather than along the c axis as suggested for YSZ. Our results further suggest that the displacement of the oxygen from the ideal (¼, ¼, ¼) position might have been introduced during the film growth process.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yashima, M., Sasaki, S., Kakihana, M.Y, Yamaguchi, Arashi, H. and Yoshimura, M, Acta Crystallogr. B 50, 663 (1994).CrossRefGoogle Scholar
2Teufer, G., Acta Crystallogr. 15, 1187 (1962).CrossRefGoogle Scholar
3Lanteri, V., Chaim, R. and Heuer, A.H., J. Am. Ceram. Soc. 69 C-258 (1986).Google Scholar
4Chaim, R., Ruhle, M. and Heuer, A.H., J. Am. Ceram. Soc. 68, 427 (1985).CrossRefGoogle Scholar
5Zhou, Y., Lei, T.C. and Sakuma, T., J. Am. Ceram. Soc. 74, 633 (1991).CrossRefGoogle Scholar
6Appel, C.C., Botton, G.A., Horsewell, A. and Stobbs, W.M., J. Am. Ceram. Soc. 82, 429 (1999).CrossRefGoogle Scholar
7Yashima, M., Sasaki, S., Yamaguchi, Y., Kakihana, M., Yoshimura, M. and Mori, T., Appl. Phys. Lett. 72, 182 (1998).CrossRefGoogle Scholar
8Yashima, M., Arashi, H., Kakihana, M. and Yoshimura, M., J. Am. Ceram. Soc. 77, 1067 (1994).CrossRefGoogle Scholar
9Fujimori, H., Yashima, M., Sasaki, S., Kakihana, M., Mori, T., Tanaka, M. and Yoshimura, M., Phys. Rev. B 64, 134104 (2001).CrossRefGoogle Scholar
10Scanlan, C.M., Gajdardziska-Josifovska, M. and Aita, C.R., Appl. Phys. Lett. 64, 3548 (1994).CrossRefGoogle Scholar
11Kao, A.S. and Gorman, G.L., J. Appl. Phys. 67, 3826 (1990).CrossRefGoogle Scholar
12Moulzolf, S.C., Yu, Y., Frankel, D.J. and Lad, R.J., J. Vac. Sci. Technol. A15, 1211 (1997).CrossRefGoogle Scholar
13Suresh, A., Mayo, M.J., Porter, W.D. and Rawn, C.J., J. Am. Ceram. Soc. 86, 360 (2003).CrossRefGoogle Scholar
14Chambers, S.A., Tran, T.T. and Hileman, T.A., J. Mater. Res. 9, 2944 (1994).CrossRefGoogle Scholar
15Kim, Y.J., Thevuthasan, S., Shutthananadan, V., Perkins, C.L., McCready, D.E., Herman, G.S., Gao, Y., Tran, T.T., Chambers, S.A. and Peden, C.H.F., J. Electr. Spec. Rel. Pheno. 126, 177 (2002).CrossRefGoogle Scholar
16 R. Kilaas: Total Resolution. Available at http://www.totalresolution.com.Google Scholar
17Steele, D. and Fender, B.E.F., J. Phys. C 7, 1 (1974).CrossRefGoogle Scholar
18Mueller, J. Faber Jr.and M.H., Phy. Rev. B 17, 4884 (1978).Google Scholar
19Morinaga, M., Cohen, J.B., Faber, J. and Jr., , Acta Crystallogr. A 35, 789 (1979).CrossRefGoogle Scholar
20Hiriuch, H., Schultz, A.J., Leung, P.C.W. and Williams, J.M., Acta Crystallogr. B 40, 367 (1984).CrossRefGoogle Scholar
21Catlow, C.R.A., Chadwick, A.V., Greaves, G.N. and Moroney, L.M., J. Am. Ceram. Soc. 69, 272 (1986).CrossRefGoogle Scholar
22Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H. and Yoshimura, M., Acta Crystallogr. B 50, 663 (1994).CrossRefGoogle Scholar
23Yashima, M., Ohtake, K., Kakihana, M., Arashi, H. and Yoshimura, M., J. Phys. Chem. Solids 57, 17 (1996).CrossRefGoogle Scholar
24Carter, R.E. and Roth, W.L. in Electromotive Force Measurements in High-Temperature Systems, edited by Alcock, C.B. (Institution of Mining and Metallurgy, London, 1968), pp. 125144.Google Scholar
25Howard, C.J., Hill, R.J. and Reichert, B.E., Acta Crystallogr. B 44, 116 (1988).CrossRefGoogle Scholar
26Howard, C.J. and Hill, R.J., J. Mater. Sci. 26, 127 (1991).CrossRefGoogle Scholar
27McClellan, K.J., Xiao, S.Q., Lagerlof, K.P.D. and Heuer, A.H., Philos. Mag. A70, 185 (1994).CrossRefGoogle Scholar