Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:07:47.990Z Has data issue: false hasContentIssue false

Dislocations with edge components in nanocrystalline bcc Mo

Published online by Cambridge University Press:  01 February 2013

G.M. Cheng
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
W.Z. Xu
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
W.W. Jian
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
H. Yuan
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
M.H. Tsai
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Y.T. Zhu*
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Y.F. Zhang
Affiliation:
Fuels Modeling and Simulations, Idaho National Lab, Idaho Falls, Idaho 83415
P.C. Millett
Affiliation:
Fuels Modeling and Simulations, Idaho National Lab, Idaho Falls, Idaho 83415
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report high-resolution transmission electron microscopy (HRTEM) observation of a high density of dislocations with edge components (∼1016 m−2) in nanocrystalline (NC) body-centered cubic (bcc) Mo prepared by high-pressure torsion. We also observed for the first time of the ½<111> and <001> pure edge dislocations in NC Mo. Crystallographic analysis and image simulations reveal that the best way using HRTEM to study dislocations with edge components in bcc systems is to take images along <110> zone axis, from which it is possible to identify ½<111> pure edge dislocations, and edge components of ½<111> and <001> mixed dislocations. The <001> pure edge dislocations can only be identified from <100> zone axis. The high density of dislocations with edge components is believed to play a major role in the reduction of strain rate sensitivity in NC bcc metals and alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Guerin, Y., Was, G.S., and Zinkle, S.J.: Materials challenges for advanced nuclear energy systems. MRS Bull. 34(1), 10 (2009).Google Scholar
U.S. DOE: A technology roadmap for generation IV nuclear energy systems. Nuclear Energy Advisory Committee and the Generation IV International Forum, GIF-002-00. (2002). http://www.gen-4.org/Technology/roadmap.htm.Google Scholar
Ali, D., Mushtaq, N., and Butt, M.Z.: Investigation of active slip-systems in some body-centered cubic metals. J. Mater. Sci. 46(11), 3812 (2011).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., Zhang, X., Huang, J.Y., and Hirth, J.P.: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59(15), 5989 (2011).CrossRefGoogle Scholar
Monnet, G. and Terentyev, D.: Structure and mobility of the 1/2 < 111 > {112} edge dislocation in BCC iron studied by molecular dynamics. Acta Mater. 57(5), 1416 (2009).CrossRefGoogle Scholar
Liu, R.P., Wang, S.F., Wang, R., and Jiao, J.A.: The theoretical investigations of the core structure and the Peierls stress of the 1/2 < 1 1 1 >{110} edge dislocation in Mo. Mater. Sci. Eng., A 527(18–19), 4887 (2010).CrossRefGoogle Scholar
Liu, X.L., Golubov, S.I., Woo, C.H., and Huang, H.C.: Glide of edge dislocations in tungsten and molybdenum. Mater. Sci. Eng., A 365(1–2), 96 (2004).CrossRefGoogle Scholar
Bacon, D.J., Osetsky, Y.N., and Rong, Z.: Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron. Philos. Mag. 86(25–26), 3921 (2006).CrossRefGoogle Scholar
Clouet, E., Ventelon, L., and Willaime, F.: Dislocation core energies and core fields from first principles. Phys. Rev. Lett. 102(5), 4 (2009).CrossRefGoogle ScholarPubMed
Domain, C. and Monnet, G.: Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys. Rev. Lett. 95(21), 4 (2005).CrossRefGoogle ScholarPubMed
Cosgriff, E.C., Nellist, P.D., Hirsch, P.B., Zhou, Z., and Cockayne, D.J.H.: ADF STEM imaging of screw dislocations viewed end-on. Philos. Mag. 90(33), 4361 (2010).CrossRefGoogle Scholar
Hsiung, L.L.: On the mechanism of anomalous slip in bcc metals. Mater. Sci. Eng., A 528(1), 329 (2010).CrossRefGoogle Scholar
Sigle, W.: High-resolution electron microscopy and molecular dynamics study of the (a/2)[111] screw dislocation in molybdenum. Philos. Mag. A 79(5), 1009 (1999).CrossRefGoogle Scholar
Terentyev, D.A., Osetsky, Y.N., and Bacon, D.J.: Effects of temperature on structure and mobility of the <1 0 0> edge dislocation in body-centred cubic iron. Acta Mater. 58(7), 2477 (2010).CrossRefGoogle Scholar
Nabarro, F.R.N.: Dislocations in Solids, V2 (North-Holland Press, Amsterdam, Netherlands, 1979).Google Scholar
Vitek, V., Perrin, R.C., and Bowen, D.K.: Core structure of 1/2(111) screw dislocations in B C C crystals. Philos. Mag. 21(173), 1049 (1970).CrossRefGoogle Scholar
Vitek, V.: Theory of core structures of dislocations in body-centered cubic metals. Cryst. Lattice Defects. 5(1), 1 (1974).Google Scholar
Hirsch, P.B., Zhou, Z., and Cockayne, D.J.H.: Determination of the sign of screw dislocations viewed end-on by weak-beam diffraction contrast. Philos. Mag. 87(34), 5421 (2007).CrossRefGoogle Scholar
Groger, R., Dudeck, K.J., Nellist, P.D., Vitek, V., Hirsch, P.B., and Cockayne, D.J.H.: Effect of Eshelby twist on core structure of screw dislocations in molybdenum: Atomic structure and electron microscope image simulations. Philos. Mag. 91(18), 2364 (2010).CrossRefGoogle Scholar
Duesbery, M.S. and Xu, W.: The motion of edge dislocations in body-centered cubic metals. Scr. Mater. 39(3), 283 (1998).CrossRefGoogle Scholar
Zhao, Y.H., Topping, T., Bingert, J.F., Thornton, J.J., Dangelewicz, A.M., Li, Y., Liu, W., Zhu, Y.T., Zhou, Y.Z., and Lavernia, E.L.: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20(16), 3028 (2008).CrossRefGoogle Scholar
Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C.: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49(9), 1497 (2001).CrossRefGoogle Scholar
Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743 (2003).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57(1), 1 (2012).CrossRefGoogle Scholar
Wu, X.L., Liao, X.Z., Srinivasan, S.G., Zhou, F., Lavernia, E.J., Valiev, R.Z., and Zhu, Y.T.: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100(9), 095701 (2008).CrossRefGoogle ScholarPubMed
Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Mathaudhu, S.N., and Kecskes, L.J.: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95(3), 031909 (2009).CrossRefGoogle Scholar
Wang, Y.M., Ma, E., Valiev, R.Z., and Zhu, Y.T.: Tough nanostructured metals at cryogenic temperatures. Adv. Mater. 16(4), 328 (2004).CrossRefGoogle Scholar
Wu, X.L., Zhu, Y.T., Wei, Y.G., and Wei, Q.: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103(20), 205504 (2009).CrossRefGoogle ScholarPubMed
Zhao, Y.H., Bingert, J.E., Liao, X.Z., Cui, B.Z., Han, K., Sergueeva, A.V., Mukherjee, A.K., Valiev, R.Z., Langdon, T.G., and Zhu, Y.T.: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18(22), 2949 (2006).CrossRefGoogle Scholar
Zhu, Y.T. and Liao, X.Z.: Nanostructured metals - retaining ductility. Nat. Mater. 3(6), 351 (2004).CrossRefGoogle ScholarPubMed
Cheng, G.M., Yuan, H., Jian, W.W., Xu, W.Z., Millett, P.C., and Zhu, Y.T.: Deformation-induced ω phase in nanocrystalline Mo. Scr. Mater. 68(2), 130 (2013).CrossRefGoogle Scholar
Wei, Q., Pan, Z.L., Wu, X.L., Schuster, B.E., Kecskes, L.J., and Valiev, R.Z.: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59(6), 2423 (2011).CrossRefGoogle Scholar
Wei, Q., Zhang, H.T., Schuster, B.E., Ramesh, K.T., Valiev, R.Z., Kecskes, L.J., Dowding, R.J., Magness, L., and Cho, K.: Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater. 54(15), 4079 (2006).CrossRefGoogle Scholar
Edwards, J.W., Speiser, R., and Johnston, H.L.: High temperature structure and thermal expansion of some metals as determined by x-ray diffraction data. 1. Platinum, tantalum, niobium, and molybdenum. J. Appl. Phys. 22(4), 424 (1951).CrossRefGoogle Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).CrossRefGoogle Scholar
Jiang, H.G., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C.: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A. 290, 128 (2000).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1 (1995).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B. 29(12), 6443 (1984).CrossRefGoogle Scholar
Osetsky, Y.N. and Bacon, D.J.: An atomic-level model for studying the dynamics of edge dislocations in metals. Model. Simul. 11(4), 427 (2003).CrossRefGoogle Scholar
Koch, C.T.: Determination of core structure periodicity and point defect density along dislocations. Ph.D. Thesis, Arizona State University, 2002.Google Scholar
Spence, J.C.H., in Experimental High Resolution Electron Microscopy (Clarendon Press, Oxford, UK, 1980).Google Scholar
Cheng, G.M., Tian, Y.X., He, L.L., and Guo, J.T.: Orientation relationship and interfacial structure between alpha-Nb(5)Si(3) and Nb solid solution in the eutectic lamellar structure. Philos. Mag. 89(31), 2801 (2009).CrossRefGoogle Scholar
Wei, Q.: Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses. J. Mater. Sci. 42(5), 1709 (2007).CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A. 381(1–2), 71 (2004).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1992).Google Scholar
Amelinckx, S.: Dislocations in Particular Structures (North-Holland Publishing Company, Amsterdam, Netherlands, 1979).Google Scholar
Cheng, G.M., Jian, W.W., Xu, W.Z., Yuan, H., Millett, P.C., and Zhu, Y.T.: Grain size effect on deformation mechanisms of nanocrystalline bcc metal. Mater. Res. Lett. ifirst, 1 (2012). http://www.tandfonline.com/doi/abs/10.1080/21663831.2012.739580.Google Scholar
Supplementary material: File

Cheng Supplementary Material

Appendix

Download Cheng Supplementary Material(File)
File 3.4 MB