Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:37:47.477Z Has data issue: false hasContentIssue false

Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels

Published online by Cambridge University Press:  30 October 2017

Fred J. Burpo*
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
Enoch A. Nagelli
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
Lauren A. Morris
Affiliation:
Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC, Picatinny Arsenal, New Jersey 07806, USA
Joshua P. McClure
Affiliation:
United States Army Research Laboratory-Sensors and Electron Devices Directorate, Adelphi, Maryland 20783, USA
Madeline Y. Ryu
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
Jesse L. Palmer
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Gold, palladium, and platinum aerogels were prepared by a rapid, direct solution-based reduction synthesis with densities of 0.54, 0.065, and 0.055 g/cm3, respectively. Salt solutions were reduced at 1:1 (v/v) with dimethylamine borane and sodium borohydride to rapidly form gels within seconds to minutes above a threshold salt concentration and were then rinsed and freeze dried. Au, Pd, and Pt aerogels had no presence of oxide phases confirmed by X-ray diffractometry. Specific surface areas determined with gas physisorption were 3.06, 15.43, and 20.56 m2/g for Au, Pd, and Pt. Electrochemically determined specific capacitances using electrochemical impedance spectroscopy and cyclic voltammetry were 2.18, 4.13, and 4.20 F/g, and 2.67, 7.99, and 5.12 F/g for Au, Pd, and Pt, respectively. The rapid synthesis, high solvent accessible specific surface area, conductivity, and capacitance make these noble metal aerogels candidates for many of catalytic, energy, and sensor applications.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

Rolison, D.: Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003).Google Scholar
Wei, T., Chen, C., Chang, K., Lu, S., and Hu, C.: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 21, 3228 (2009).CrossRefGoogle Scholar
Anderson, M., Morris, C., Stroud, R., Merzbacher, C., and Rolison, D.: Colloidal gold aerogels: Preparation, properties, and characterization. Langmuir 15, 674 (1999).Google Scholar
Gaponik, N., Herrmann, A., and Eychmuller, A.: Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives. J. Phys. Chem. Lett. 3, 8 (2012).Google Scholar
Olsson, R., Samir, M., Salazar-Alvarez, G., Belova, L., Strom, V., Berglund, L., Ikkala, O., Nogues, J., and Gedde, U.: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010).CrossRefGoogle ScholarPubMed
Hodge, A., Hayes, J., Cao, J., Biener, J., and Hamza, A.: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).CrossRefGoogle Scholar
Hodge, A., Biener, J., Hayes, J., Bythrow, P., Volkert, C., and Hamza, A.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
Ambrosi, A., Chua, C., Bonanni, A., and Pumera, M.: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150 (2014).Google Scholar
Maillard, F., Schreier, S., Hanzlik, M., Savinova, E., Weinkauf, S., and Stimming, U.: Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385 (2005).Google Scholar
Zielasek, V., Jurgens, B., Schulz, C., Biener, J., Biener, M., Hamza, A., and Baumer, M.: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).CrossRefGoogle ScholarPubMed
Viswanath, B., Patra, S., Munichandraiah, N., and Ravishankar, N.: Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles. Langmuir 25, 3115 (2009).CrossRefGoogle ScholarPubMed
Ingale, S., Sastry, P., Wagh, P., Tripathi, A., Rao, R., Tewari, R., Rao, P., Patel, R., Tyagi, A., and Gupta, S.: Synthesis and micro structural investigations of titania-silica nano composite aerogels. Mater. Chem. Phys. 135, 497 (2012).CrossRefGoogle Scholar
Jung, S., Jung, H., Fang, W., Dresselhaus, M., and Kong, J.: A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 14, 1810 (2014).CrossRefGoogle ScholarPubMed
Song, L., Wu, Z., Liang, H., Zhou, F., Yu, Z., Xu, L., Pan, Z., and Yu, S.: Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19, 117 (2016).Google Scholar
Mahadk-Khanolkar, S., Donthula, S., Bang, A., Wisner, C., Sotiroupolous-Leventis, C., and Leventis, N.: Polybenzoxazine aerogels. 2. Interpenetrating networks with iron oxide and the carbothermal synthesis of highly porous monolithic pure iron(0) aerogels as energetic materials. Chem. Mater. 26, 1318 (2014).Google Scholar
Tang, Y., Yeo, K., Chen, Y., Yap, L., Xiong, W., and Cheng, W.: Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J. Mater. Chem. A 1, 6723 (2013).Google Scholar
Tang, Y., Gong, S., Chen, Y., Yap, L., and Cheng, W.: Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 8, 5707 (2014).CrossRefGoogle ScholarPubMed
Liu, W., Herrmann, A., Bigall, N., Rodriguez, P., Wen, D., Oezaslan, M., Schmidt, T., Gaponik, N., and Eychmuller, A.: Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 48, 154 (2015).Google Scholar
Zhao, P., Li, N., and Astruc, D.: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638 (2013).CrossRefGoogle Scholar
Wen, D., Herrmann, A., Borchardt, L., Simon, F., Liu, W., Kaskel, S., and Eychmuller, A.: Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J. Am. Chem. Soc. 136, 2727 (2014).Google Scholar
Jana, N., Gearheart, L., and Murphy, C.: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
Walsh, D., Arcelli, L., Ikoma, T., Tanaka, J., and Mann, S.: Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater. 2, 386 (2003).Google Scholar
Song, Y., Zhang, D., Goa, W., and Xia, X.: Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem.–Eur. J. 11, 2177 (2005).Google Scholar
Bigall, N., Herrmann, A., Vogel, M., Rose, M., Simon, P., Carrillo-Cabrera, W., Dorfs, D., Kaskel, S., Gaponik, N., and Eychmuller, A.: Hydrogels and aerogels from noble metal nanoparticles. Angew. Chem., Int. Ed. 48, 9731 (2009).Google Scholar
Bigall, N. and Eychmuller, A.: Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos. Trans. R. Soc., A 368, 1385 (2010).CrossRefGoogle ScholarPubMed
Liu, W., Rodriguez, P., Borchardt, L., Foelske, A., Yuan, J., Herrmann, A., Geiger, D., Zheng, Z., Kaskel, S., Gaponik, N., Kotz, R., Schmidt, T., and Eychmuller, A.: Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 52, 9849 (2013).Google Scholar
Wen, D., Liu, W., Haubold, D., Zhu, C., Oschatz, M., Holzchuh, M., Wolf, A., Simon, F., Kaskel, S., and Eychmuller, A.: Gold aerogels: Three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559 (2016).Google Scholar
Ding, Y., Chen, M., and Erlebacher, J.: Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876 (2004).CrossRefGoogle ScholarPubMed
Liu, W., Herrmann, A., Geiger, D., Borchardt, L., Simon, F., Kaskel, S., Gaponik, N., and Eychmuller, A.: High-performance electrocatalysis on palladium aerogels. Angew. Chem., Int. Ed. 51, 5743 (2012).Google Scholar
Herrmann, A., Formanek, P., Borchardt, L., Klose, M., Giebeler, L., Eckert, J., Kaskel, S., Gaponik, N., and Eychmüller, A.: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles. Chem. Mater. 26, 1074 (2014).CrossRefGoogle Scholar
Ameen, K., Rajasekharan, T., and Rajasekharan, M.: Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J. Non-Cryst. Solids 352, 737 (2006).Google Scholar
Qin, G., Liu, J., Balaji, T., Xu, X., Matsunaga, H., Hakuta, Y., Zuo, L., and Raveendran, P.: A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J. Phys. Chem. C 112, 10352 (2008).CrossRefGoogle Scholar
Krishna, K., Sandeep, C., Philip, R., and Eswaramoorthy, M.: Mixing does the magic: A rapid synthesis of high surface area noble metal nanosponges showing broadband nonlinear optical response. ACS Nano 5, 2681 (2010).CrossRefGoogle Scholar
Kistler, S.: Coherent expanded aerogels and jellies. Nature 127, 741 (1931).Google Scholar
Du, A., Zhou, B., Zhang, Z., and Shen, J.: A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013).CrossRefGoogle ScholarPubMed
Tappan, B., Steiner, S., and Luther, E.: Nanoporous metal foams. Angew. Chem., Int. Ed. 49, 4544 (2010).CrossRefGoogle ScholarPubMed
Brunauer, B., Emmett, P., and Teller, P.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
Barrett, E., Joyner, L., and Halenda, P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).Google Scholar
de Levie, R.: On porous electrodes in electrolyte solutions-IV. Electrochim. Acta 9, 1231 (1964).CrossRefGoogle Scholar
Keiser, H., Beccu, K., and Gutjahr, M.: Evaluation of the pore structure of porous electrodes from impedance measurements. Electrochim. Acta 21, 539 (1976).Google Scholar
Schneider, C., Rasband, W., and Eliceiri, K.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).Google Scholar
Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., and Siemieniewska, T.: International union of pure and applied chemistry, IUPAC. Pure Appl. Chem. 57, 603 (1985).Google Scholar
Wang, S. and Tseng, W.: Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction. J. Nanopart. Res. 11, 947 (2009).Google Scholar
Thommes, M., Kaneko, K., Neimark, A., Oliver, J., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).Google Scholar
Liu, X., Zhang, R., Zhan, L., Long, D., Qiao, W., Yang, J., and Ling, L.: Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte. New Carbon Mater. 22, 153 (2007).Google Scholar
Gamby, J., Taberna, P., Simon, P., Fauvarque, J., and Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).Google Scholar
Farma, R., Deraman, M., Awitdrus, , Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H., and Dolah, B.N.M.: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8, 257 (2013).CrossRefGoogle Scholar
Song, H., Jung, Y., Lee, K., and Dao, L.: Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochim. Acta 44, 3513 (1999).Google Scholar
Bisquert, J.: Influence of the boundaries in the impedance of porous film electrodes. Phys. Chem. Chem. Phys. 2, 4185 (2000).CrossRefGoogle Scholar
Bisquert, J.: Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325 (2002).CrossRefGoogle Scholar
Bisquert, J., Garcia-Belmonte, G., Bueno, P., Longo, E., and Bulhoes, L.: Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 452, 229 (1998).CrossRefGoogle Scholar
Lukaszewski, M., Sosko, M., and Czerwinski, A.: Electrochemical methods of real surface area determination of noble metal electrodes—An overview. Int. J. Electrochem. Sci. 11, 4442 (2016).CrossRefGoogle Scholar
Kornyshev, A. and Irbakh, M.: Double-layer capacitance on a rough metal surface. Phys. Rev. E 53, 6192 (1996).Google Scholar
Supplementary material: PDF

Burpo et al supplementary material

Figures S1-S2

Download Burpo et al supplementary material(PDF)
PDF 393.1 KB