Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T08:52:29.630Z Has data issue: false hasContentIssue false

Direct Preparation of Nonagglomerated Indium Tin Oxide Nanoparticles using Various Spray Pyrolysis Methods

Published online by Cambridge University Press:  03 March 2011

Yoshifumi Itoh
Affiliation:
Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
Mikrajuddin Abdullah
Affiliation:
Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
Kikuo Okuyama*
Affiliation:
Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Indium tin oxide particles were prepared using three different spray synthetic techniques: conventional, salt-assisted, and low pressure. Optimum conditions for the preparation of small size, nonagglomerated particles were investigated for these three methods. The use of the conventional spray pyrolysis method resulted in only larger particles (submicrometer order). Salt-assisted spray pyrolysis (SASP) and low-pressure spray pyrolysis (LPSP) produced highly crystalline, dense, homogeneous, and nearly nonagglomerated nanoparticles that were less than 25 nm in size. The size of the particles was in the range 12–24 nm for the SASP method and 8–14 nm for the LPSP method. In addition, the LPSP method led to the production of single nanometer-size multicomponent particles in a single step with less heating time without the need for any post heat treatment and additives.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Van Boort, H.J. and Groth, R.: Philips Tech. Rev. 29, 17 (1968).Google Scholar
2Vossen, J.L.: Phys. Thin Films. 9, 1 (1977).Google Scholar
3Lee, C.H. and Huang, C.S.: Mater. Sci. Eng. B22, 233 (1994).CrossRefGoogle Scholar
4Gao, Z., Gao, Y., Li, Y. and Li, Y.: Nanostruct. Mater. 11, 611 (1999).CrossRefGoogle Scholar
5Devi, P.S., Chatterjee, M. and Ganguli, D.: Mater. Lett. 55, 205 (2002).CrossRefGoogle Scholar
6Alam, M.J. and Cameron, D.C.: Thin Solid Films. 377378, 455 (2000).Google Scholar
7Yanagisawa, K., Udawatte, C.P. and Nasu, N.: J. Mater. Res. 15, 1404 (2000).Google Scholar
8Udawatte, C.P. and Yanagisawa, K.: J. Am. Ceram. Soc. 84, 231 (2001).CrossRefGoogle Scholar
9Goebbert, C., Nonninger, R., Aegerter, M.A. and Scmidt, H.: Thin Solid Films. 351, 79 (1999).CrossRefGoogle Scholar
10Okuyama, K. and Lenggoro, I.W.: Chem. Eng. Sci. 58, 537 (2003).CrossRefGoogle Scholar
11Xia, B., Lenggoro, I.W. and Okuyama, K.: Adv. Mater. 13, 1579 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
12Xia, B., Lenggoro, I.W. and Okuyama, K.: J. Mater. Chem. 13, 2925 (2001).CrossRefGoogle Scholar
13Itoh, Y., Lenggoro, I.W., Okuyama, K., Madler, L. and Pratsinis, S.E.: J. Nanoparticle Res. 5, 191 (2003).CrossRefGoogle Scholar
14Itoh, Y. and Okuyama, K.: J. Ceram. Soc. Jpn. 111, 815 (2003).CrossRefGoogle Scholar
15Kang, Y.C. and Park, S.B.: J. Aerosol Sci. 26, 1131 (1995).Google Scholar
16Kang, Y.C. and Park, S.B.: J. Mater. Sci. 31, 2409 (1996).CrossRefGoogle Scholar
17Jung, K.Y., Kang, Y.C. and Park, S.B.: J. Mater. Sci. Lett. 16, 1848 (1997).Google Scholar
18Lenggoro, I.W., Itoh, Y., Iida, N. and Okuyama, K.: Mater. Res. Bull. 38, 1819 (2003).Google Scholar
19Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M. and Okuyama, K.: J. Mater. Res. 15, 733 (2000).CrossRefGoogle Scholar
20Kang, Y.C., Lenggoro, I. W., Park, S.B. and Okuyama, K.: Appl. Phys. A. 72, 103 (2001).Google Scholar
21Kang, Y.C., Lenggoro, I.W., Park, S.B. and Okuyama, K.: J. Solid State Chem. 146, 168 (1999).Google Scholar
22 JCPDS No. 6-0416, Joint Committee for Powder Diffraction Standards, Newton Square, PA (1984)Google Scholar
23Devi, P.S., Chatterjee, M. and Ganguli, D.: Mater. Lett. 55, 205 (2002).CrossRefGoogle Scholar
24 A.R. West, Solid State Chemistry and Its Applications (John Wiley, Chichester, 1985), pp. 174175Google Scholar
25De Wit, H.W.: J. Solid State Chem. 13, 192 (1975).Google Scholar
26Kimura, T., Inada, A. and Yamaguchi, T.: J. Mater. Sci. 24, 220 (1989).Google Scholar
27Itoh, Y., Lenggoro, I.W., Pratsinis, S.E. and Okuyama, K.: J. Mater. Res. 17, 3222 (2002).Google Scholar