Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:26:14.362Z Has data issue: false hasContentIssue false

The direct observation of structural development during vanadium pentoxide gelation

Published online by Cambridge University Press:  31 January 2011

J.K. Bailey*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
G.A. Pozarnsky
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
M.L. Mecartney*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
*
a)Current address: Sandia National Laboratories, Inorganic Materials Chemistry, Division 1846, P.O. Box 5800, Albuquerque, New Mexico 87185.
b)Current address: Department of Mechanical Engineering, Materials Division, University of California–Irvine, Irvine, California 92717. Author to whom correspondence should be addressed.
Get access

Abstract

The sequence of structural evolution in the gelation of vanadic acid to form vanadium pentoxide gels was studied using cryogenic transmission electron microscopy (cryo-TEM) and scanning tunneling microscopy (STM). Small whiskers form from initially homogeneous solutions, and then grow into crystalline ribbon-like colloidal particles. It is proposed that the whiskers form from polymerization of dioxovanadium cations. The ribbons then grow by continued addition of dioxovanadium cations which are supplied by the decomposition of decavanadate ions. In solution, the ribbon-like particles have dimensions of approximately 25 nm × 3 nm × over 1 μm. These ribbons are flexible perpendicular to the plane of the ribbon. Upon drying, a flat rigid mass of ribbon-like particles is formed. The ribbons examined by STM showed striations 3 nm wide, a value that corresponds with the width of the unit cell proposed by J. Legendre and J. Livage [J. Colloid. and Interf. Sci. 94, 75 (1983)].

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Livage, J.,Chem. Mater. 3, 578 (1991).CrossRefGoogle Scholar
2.Livage, J., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 167.Google Scholar
3.Guestaux, C., Patent, U.S. 4203 769, May 20, 1980.Google Scholar
4.Bullot, J., Appl. Phys. Lett. 36, 986 (1980).CrossRefGoogle Scholar
5.Sanchez, C., Babonneau, F., Morineau, R., Livage, J., and Bullot, J., Philos. Mag. B 47, 279 (1983).CrossRefGoogle Scholar
6.Kouvanis, P., Vomas, P., Mytilineou, E., Roilos, M., and Murawski, L., J. Phys. C 21, 967 (1988).Google Scholar
7.Livage, J. and Lemerle, J., Annu. Rev. Mater. Sci. 12, 103 (1982).CrossRefGoogle Scholar
8.Watson, J. H. L., Heller, W., and Wojetowicz, W. J., Science 109, 274 (1949).CrossRefGoogle Scholar
9.Wojetowicz, W. J., Ph.D. Thesis, Wayne State University (1953).Google Scholar
10.Legendre, J. and Livage, J., Colloid, J. and Interface Sci. 94, 75 (1983).CrossRefGoogle Scholar
11.Legendre, J., Aldeberet, P., Baffinger, N., and Livage, J., Colloid, J. and Interface Sci. 94, 84 (1983).CrossRefGoogle Scholar
12.Lemerle, J., Nejem, L., and Lefebvre, J., J. Inorg. Nucl. Chem. 42, 17 (1980).CrossRefGoogle Scholar
13.Bailey, J.K., Bellare, J.R., and Mecartney, M.L., in Specimen Preparation for Transmission Electron Microscopy of Materials, edited by Bravman, J. C., Anderson, R. M., and McDonald, M. L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), p. 69.Google Scholar
14.Bellare, J.R., Scriven, L.E., Davis, H.T., and Talmon, Y., J. Electron Microsc. Technol. 10, 87 (1988).CrossRefGoogle Scholar
15.Bailey, J. K. and Mecartney, M. L., in Better Ceramics Through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 372.Google Scholar
16.Bailey, J.K., Nagase, T., Broberg, S.M., and Mecartney, M.L., J. Non-Cryst. Solids 109, 198 (1989).CrossRefGoogle Scholar
17.Bailey, J. K. and Mecartney, M. L., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180 Pittsburgh, PA, 1990), p. 153.Google Scholar
18.Bailey, J. K. and Mecartney, M. L., Colloids and Surfaces, accepted for publication (1992).Google Scholar
19.Bailey, J. K., Nagase, T., Pozarnsky, G. A., and Mecartney, M. L., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 759.Google Scholar
20.Gharbi, N., Sanchez, C., Livage, J., Lemerle, J., Nejem, L., and Lefebvre, J., Inorg. Chem. 21, 2758 (1982).CrossRefGoogle Scholar
21.Evans, H.T., Jr., Inorg. Chem. 5, 967 (1966).CrossRefGoogle Scholar
22.Pozarnsky, G. A. and McCormick, A. V., submitted for publication (1992).Google Scholar