Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T00:28:33.920Z Has data issue: false hasContentIssue false

Direct chemical vapor deposition growth of tunable HfSiON films by a new precursor combination

Published online by Cambridge University Press:  03 March 2011

Bin Xia
Affiliation:
Air Liquide Electronics U.S. LP, Dallas, Texas 75243
Matthew L. Fisher
Affiliation:
Air Liquide Electronics U.S. LP, Dallas, Texas 75243
Harold Stemper
Affiliation:
Air Liquide Electronics U.S. LP, Dallas, Texas 75243
Ashutosh Misra*
Affiliation:
Air Liquide Electronics U.S. LP, Dallas, Texas 75243
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hafnium silicon oxynitride (HfSiON) films were deposited on 200-mm silicon substrates by low-pressure chemical vapor deposition (LPCVD) from a combination of trisilylamine (TSA) and tetrakis(diethylamido)hafnium(IV) (TDEAH) in the temperature range 450 to 575 °C. A highly volatile and carbon-free silicon precursor TSA was used to deposit HfSiON films for the first time. HfSiON films were deposited in a single step with no need of a post-treatment process for nitrogen incorporation. The film composition was tuned in a wide compositional range, and high growth rates were achieved. NH3 was found to have profound effects on film growth rate, metal ratio (Si% or Hf%), nitrogen incorporation, and carbon residue in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hubbard, K.J. and Chlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
2Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
3Hausmann, D.M., Kim, E., Becker, J., and Gordon, R.G.: Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 14, 4350 (2002).CrossRefGoogle Scholar
4Hendrix, B.C., Borovik, A.S., Xu, C., Roeder, J.F., Baum, T.H., Bevan, M.J., Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Bu, H., and Colombo, L.: Composition control of Hf1−xSixO2 films deposited on Si by chemical vapor deposition using amide precursors. Appl. Phys. Lett. 80, 2362 (2002).CrossRefGoogle Scholar
5Ohshita, Y., Ogura, A., Ishikawa, M., Kada, T., Hoshino, A., Suzuki, T., Machida, H., and Soai, K.: HfO2 and Hf1−xSixO2 thin films grown by metal-organic CVD using tetrakis(diethylamido) hafnium. Chem. Vap. Deposition 12, 130 (2006).CrossRefGoogle Scholar
6Roberts, J.L., Marshall, P.A., Jones, A.C., Chalker, P.R., Bickley, J.F., Williams, P.A., Taylor, S., Smith, L.M., Critchlow, G.W., Schumacher, M., and Lindner, J.: Deposition of hafnium silicate films by liquid injection MOCVD using a single source or dual source approach. J. Mater. Chem. 14, 391 (2004).CrossRefGoogle Scholar
7Okuyama, Y., Barelli, C., Tousseau, C., Park, S., and Senzaki, Y.: Batch process for atomic layer deposition of hafnium silicate thin films on 300-mm-diameter silicon substrates. J. Vac. Sci. Technol. A. 23, L1 (2005).CrossRefGoogle Scholar
8Ohshita, Y., Ogura, A., Ishikawa, M., Kada, T., and Machida, H.: Tris-diethylamino-silane decomposition due to tetrakis-dethylamido-hafnium in Hf1−xSixO2 chemical vapor deposition. Jpn. J. Appl. Phys. 42, L578 (2003).CrossRefGoogle Scholar
9Ohshita, Y., Ogura, A., Ishikawa, M., Hoshino, A., Hiiro, S., Suzuki, T., and Machida, H.: Hf1−xSixO2 deposition by metal organic chemical vapor deposition using the Hf(NEt2)4/SiH(NEt)3/O2 gas system. Thin Solid Films 416, 208 (2002).CrossRefGoogle Scholar
10Aoyama, T., Torii, K., Mitsuhashi, R., Maeda, T., Kamiyama, S., Horiuchi, A., Kitajima, H., and Arikado, T.: Nitrided hafnium silicate film formation by sequential process using a hot wall batch system and its application to MOS transistor, in Fundamentals of Novel Oxide/Semiconductor Interfaces, edited by Abernathy, C.R., Gusev, E.P., Schlom, D. and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 786, Warrendale, PA, 2004), pp. 273278.Google Scholar
11Hoover, C.A., Meiere, S.H., Litwin, M.M., Natwora, J.P., Piotrowski, G.B., Zhang, D., and Peck, J.: Silicon precursors for gate dielectric and electrode applications, Electrochemical Society Proceedings (Electrochemical Society, Pennington, NJ, 2004), pp. 354360.Google Scholar
12Gumpher, J., Bather, W., Mehta, N., and Wedel, D.: Characterization of low-temperature silicon nitride LPCVD from Bis(tertiary-butylamino)silane and ammonia. J. Electrochem. Soc. 151, G353 (2004).CrossRefGoogle Scholar
13Kim, W-K., Rhee, S-W., Lee, N-I., Lee, J-H., and Kang, H-K.: Atomic layer deposition of hafnium silicate films using hafnium tetrachloride and tetra-n-butyl orthosilicate. J. Vac. Sci. Technol. A. 22, 1175 (2004).CrossRefGoogle Scholar
14Smith, R.C., Ma, T., Hoilien, N., Tsung, L.Y., Bevan, M.J., Colombo, L., Roberts, J., Campbell, S.A., and Gladfelter, W.L.: Chemical vapour deposition of the oxides of titanium, zirconium and hafnium for use as high-i materials in microelectronic devices. A carbon-free precursor for the synthesis of hafnium dioxide. Adv. Mater. Opt. Electron. 10, 105 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
15Xia, B., Chen, F., Campbell, S.A., Roberts, J.T., and Gladfelter, W.L.: Combinatorial CVD of zirconium, hafnium, and tin dioxides for applications in high-k dielectrics. Chem. Vap. Deposition 10, 195 (2004).CrossRefGoogle Scholar
16Nam, W-H. and Rhee, S-W.: Atomic layer deposition of hafnium silicate thin films using HfCl2[N(SiMe3)2]2, Electrochem. Solid-State Lett. 7, C55 (2004).CrossRefGoogle Scholar
17Zurcher, S., Morstein, M., Spencer, N.D., Lemberger, M., and Bauer, A.: New single-source precursors for the MOCVD of high-dielectric zirconium silicates to replace SiO2 in semiconducting devices. Chem. Vap. Deposition 8, 171 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
18Dussarrat, C., Suzuki, I., and Yanagita, K.: Evaluation of STA for HfSiOx film deposition, 210th ECS Meeting, Electrochemical Society, Cancun, Mexico, 2006.Google Scholar
19Chalker, P.R., Marshall, P.A., Potter, R.J., Joyce, T.B., Jones, A.C., Taylor, S., Noakes, T.C.Q., and Bailey, P.: Thermal stability of hafnium silicate dielectric films deposited by a dual source liquid injection MOCVD. J. Mater. Sci. Mater. Electron. 15, 711 (2004).CrossRefGoogle Scholar
20Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Shanware, A., and Colombo, L.: Application of HfSiON as a gate dielectric materials. Appl. Phys. Lett. 80, 3183 (2002).CrossRefGoogle Scholar
21Wallace, R.M.: Challenges for the characterization and integration of high-k dielectrics. Appl. Surf. Sci. 231–232, 543 (2004).CrossRefGoogle Scholar
22Bastos, K.P., Pezzi, R.P., Miotti, L., Soares, G.V., Driemeier, C., Morais, J., and Baumvol, I.J.R.: Stability of nitrogen and hydrogen in high-k dielectrics, in Fundamentals of Novel Oxide/Semiconductor Interfaces edited by Abernathy, C.R., Gusev, E.P., Schlom, D. and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 786, Warrendale, PA, 2004), pp. 123133.Google Scholar
23Takahashi, K. and Funakubo, H.: Effect of deposition temperature on the characteristics of hafnium oxide films deposited by metalorganic chemical vapor deposition using amide precursor. J. Mater. Res. 19, 584 (2004).CrossRefGoogle Scholar
24Senzaki, Y., Park, S., Chatham, H., and Bartholomew, L.: Atomic layer deposition of hafnium oxide and hafnium silicate thin films using liquid precursors and ozone. J. Vac. Sci. Technol. A. 22, 1175 (2004).CrossRefGoogle Scholar
25Bastos, K.P., Morals, J., Miotti, L., Pezzi, R.P., Soares, G.V., and Baumvol, I.J.R.: Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2. Appl. Phys. Lett. 81, 1669 (2002).CrossRefGoogle Scholar
26Inumiya, S., Sekine, K., Niwa, S., Kaneko, A., and Sato, M.: Fabrication of HfSiON gate dielectrics by plasma oxidation and nitridation, optimized for 65 nm node low power CMOS applications, 2003 Symposium on VLSi Technology Digest of Technical Papers, 2003.Google Scholar
27Inumiya, S., Miura, T., Shirai, K., Matsuki, T., Torii, K., and Nara, Y.: Fabrication of high-mobility nitrided hafnium silicate gate dielectrics with sub-1-nm equivalent oxide thickness using plasma nitridation and high-temperature postnitridation annealing. Jpn. J. Appl. Phys. 45, 2898 (2006).CrossRefGoogle Scholar
28Dussarrat, C., Girard, J-M., Kimura, T., Tamaoki, N., and Sato, Y.: The Cl & C-free trisilylamine (TSA): A promising solution for low temperature CVD of silicon nitride (Semiconductor Equipment and Materials International, San Jose, CA, 2003), pp. 138146.Google Scholar
29Copel, M.: Medium energy ion scattering for analysis of microelectronic materials, IBM J. Res. Develop. 44, 571 (2000).CrossRefGoogle Scholar
30Kang, S-W., Rhee, S-W., and George, S.M.: Infrared spectroscopic study of atomic layer deposition mechanism for hafnium silicate thin films using HfCl2[N(SiMe3)2]2 and H2O. J. Vac. Sci. Technol. A 22, 2392 (2004).CrossRefGoogle Scholar
31Fix, R.M., Gordon, R.G., and Hoffman, D.M.: Synthesis of thin films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors. Chem. Mater. 2, 235 (1990).CrossRefGoogle Scholar
32Hoffman, D.M.: Chemical vapour deposition of nitride thin films. Polyhedron 13, 1169 (1994).CrossRefGoogle Scholar
33Musher, J.N. and Gordon, R.G.: Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia. J. Mater. Res. 11, 989 (1996).CrossRefGoogle Scholar
34Hendrix, B.C., Borovik, A.S., Xu, C., Roeder, J.F., Baum, T.H., Bevan, M.J., Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Bu, H., and Colombo, L.: Comparison of MOCVD precursors for Hf1–xSixO2 gate dielectric deposition, in Silicon Materials– Processing, Characterization and Reliability edited by Veteran, J.L., O’Meara, D.L., Misra, V. and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 716, Warrendale, PA, 2002) B6.7.1B6.7.6.Google Scholar