Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:39:19.924Z Has data issue: false hasContentIssue false

Diffusion of oxygen and silicon in silicon: Silicon monoxide model

Published online by Cambridge University Press:  31 January 2011

Robert H. Doremus*
Affiliation:
Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
*
Get access

Abstract

The diffusion of oxygen in silicon was modeled to result from the diffusion of dissolved silicon monoxide. The SiO molecule dissolved in the largest space in the diamond lattice of silicon, oriented in a 〈111〉 direction, with the oxygen lightly bonded to a network silicon atom. This configuration is consistent with infrared spectra, dichroism of infrared spectral lines, and internal friction of oxygen in silicon. The anomalous rapid diffusion of oxygen below 700 °C could result from the diffusion of molecular water or oxygen in silicon, but more evidence is needed to test these possibilities. Diffusion and exchange of silicon tracer in SiO with lattice silicon can possibly explain tracer diffusion of silicon in silicon.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mikkelsen, J.C., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C., Pearton, S.J., Corbett, J.W., and Pennycock, S.J. (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986), p. 19.Google Scholar
2.Lee, S.T., Fellinger, P., and Chen, S., J. Appl. Phys. 63, 1924 (1988).CrossRefGoogle Scholar
3.Gaworzewski, P. and Ritter, G., Phys. Status Solidi A 67, 511 (1981).CrossRefGoogle Scholar
4.Berghoz, W., Hutchinson, J.L., and Pirouz, P., J. Appl. Phys. 58, 3429 (1985).Google Scholar
5.Takeno, H., Hayamizu, Y., and Miki, K., J. Appl. Phys. 84, 3113 (1998).CrossRefGoogle Scholar
6.McQuaid, S.A., Johnson, B.K., Gambaro, D., Falster, R., Ashwin, M.J., and Tucker, J.H., J. Appl. Phys. 86, 1878 (1999).CrossRefGoogle Scholar
7.Hrostowski, H.J. and Kaiser, R.H., Phys. Rev. 107, 966 (1957).CrossRefGoogle Scholar
8.Kaiser, R.H., Keck, P.H., and Lange, C.F., Phys. Rev. 101, 1264 (1956).CrossRefGoogle Scholar
9.Corbett, J.W. and Watkins, G.D., J. Phys. Chem. Solids 20, 319 (1961).CrossRefGoogle Scholar
10.Corbett, J.W., McDonald, R.S., and Watkins, G.D., J. Phys. Chem. Solids 25, 873 (1964).CrossRefGoogle Scholar
11.Southgate, P.D., Proc. Phys. Soc. B 70, 804 (1957); B76, 385 (1960).CrossRefGoogle Scholar
12.Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids (Academic Press, Orlando, FL, 1972), pp. 292ff.Google Scholar
13.Haas, C., J. Phys. Chem. Solids 15, 108 (1960).CrossRefGoogle Scholar
14.Nowick, A.S. and Heller, W.R., Adv. Phys. 12, 101 (1965).CrossRefGoogle Scholar
15.Zhang, Y. and Xu, Z., Am. Mineral 80, 670 (1995).CrossRefGoogle Scholar
16.Dunken, H.H., in Treatise on Materials Science and Technology, Vol. 22, edited by Tomozawa, M. and Doremus, R.H., (Academic Press, 1982), p. 1.CrossRefGoogle Scholar
17.Shannon, R.D., Acta Cryst. A 32, 751 (1976).CrossRefGoogle Scholar
18.Bosomworth, D.R., Hayes, W., Spray, A.R.L. and Watkins, G.D., Proc. R. Soc., A317, 133 (1970).Google Scholar
19.Pajot, B., Stein, H.J., Cales, B., and Naud, C., J. Elect. Soc. 132, 3034 (1985).CrossRefGoogle Scholar
20.Haas, C., J. Phys. Chem. Solids 15, 108 (1960).CrossRefGoogle Scholar
21.Stavola, M., Patel, J.R., Kimmerling, L.C., and Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983).CrossRefGoogle Scholar
22.Newman, R.C., Tucker, J.H., and Livingstone, F.M., J. Phys. C 16, L151 (1983).CrossRefGoogle Scholar
23.Anderson, O.L. and Stuart, D.A., J. Am. Ceram. Soc. 37, 573 (1954).CrossRefGoogle Scholar
24.Doremus, R.H., Glass Science (Wiley, New York, 1994), p. 145.Google Scholar
25.Frenkl, J., Kinetic Theory of Liquids (Oxford University Press, London, 1946), pp. 1011.Google Scholar
26.Tokuda, Y., Shimokata, T., Katayama, M., and Hattori, T., in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumin, K., and Weber, E. (Mater. Res. Soc. Symp. Proc. 262, Pittsburgh, PA, 1992), p. 7580.Google Scholar
27.Doremus, R.H., J. Mater. Res. 10, 2379 (1995); 14, 3754 (1999).CrossRefGoogle Scholar
28.Frank, W., Defect and Diffusion Forum 75, 121 (1991).CrossRefGoogle Scholar
29.Gösele, V. and Tan, T.Y., Appl. Phys. A 28, 79 (1982).CrossRefGoogle Scholar
30.Peart, R.F., Phys. Status Solidi 15, K119 (1966).CrossRefGoogle Scholar
31.Ghoshtagore, R.N., Phys. Rev. Lett. 16, 890 (1966).CrossRefGoogle Scholar
32.Fairfield, J.M. and Masters, B.J., J. Appl. Phys. 38, 3148 (1967).CrossRefGoogle Scholar
33.Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, 211 (1979).CrossRefGoogle Scholar
34.Hirvones, J. and Anttila, A., Appl. Phys. Lett. 35, 703 (1979).CrossRefGoogle Scholar
36.Mayer, H.J., Mehrer, H., and Maier, K., in Radiation Effects in Semiconductors, edited by Urli, R.H. and Corbett, J.W. (Institute of Physics, London, 1977), p. 186.Google Scholar
37.Demond, F.J., Kalbitzer, S., Mannsperger, H., and Damjantschitsch, H., Phys. Lett. 93A, 503 (1983).CrossRefGoogle Scholar
38.Bracht, H., Haller, E.E., and Clarck-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).CrossRefGoogle Scholar
39.Ural, A., Griffin, P.B., and Plummer, J.D., J. Appl. Phys. 85, 6440 (1999).CrossRefGoogle Scholar
40.Mikkelsen, J.C., Appl. Phys. Lett. 41, 871 (1982).CrossRefGoogle Scholar
41.Doremus, R.H., J. Appl. Phys. 66, 4441 (1989).CrossRefGoogle Scholar
42.Tan, T.Y. and Gösele, V., Appl. Phys. Lett. 40, 616 (1982).CrossRefGoogle Scholar
43.Celler, G.K. and Trimble, L.E., Appl. Phys. Lett. 53, 2492 (1988).CrossRefGoogle Scholar
44.Nichols, C.S., Van de Walle, C.S., and Pantelides, S.T., Phys. Rev. Lett. 62, 1049 (1989); Phys. Rev. B 40, 5484 (1989).CrossRefGoogle Scholar
45.Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).CrossRefGoogle Scholar
46.Van Vechten, J.A., Phys. Rev. 10, 1482 (1974).CrossRefGoogle Scholar