Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T00:58:59.044Z Has data issue: false hasContentIssue false

Dielectric properties of barium titanium niobates

Published online by Cambridge University Press:  31 January 2011

G. L. Roberts
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. J. Cava
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. F. Peck Jr.
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. J. Krajewski
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The results of measurements of dielectric constants, in the vicinity of ambient temperature, are presented for eight barium titanium niobium oxides (BaTi1+2nNb4O13+4n for n = 0, 1, 2, 3, 4; Ba3Ti4Nb4O21, Ba3Ti5Nb6O28, and Ba6Ti2Nb8O30) in polycrystalline ceramic form. The dielectric constants are in the range of 30 to 70. The results of dielectric measurements on solid solutions obtained by partial substitution of Ta for Nb are also reported. These substitutions do not dramatically increase the dielectric constants. One material, Ta-substituted Ba3Ti5Nb6O28, has a very low temperature coefficient of dielectric constant at K ≈ 45.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eimori, T., Ohno, Y., Kimura, H., Matsufusa, J., Kishimura, S., Yoshida, A., Sumitani, H., Maruyama, T., Hayashide, Y., Morizumi, K., Katayama, T., Asakura, M., Horikawa, T., Shibano, T., Itoh, H., Sato, K., Namba, K., Nishimura, T., Satoh, S., and Miyoshi, H., Int. Electron. Devices Meeting-Tech. Digest (IEDM) 93, 631 (1993).Google Scholar
2.Takaishi, Y., Sakao, M., Kamiyama, S., Suzuki, H., and Watanabe, H., IEDM 94, 839 (1994).Google Scholar
3.Shinriki, H. and Nakata, M., IEEE Trans. Electron Devices ED-38, 455 (1991).CrossRefGoogle Scholar
4.Kwon, K. W., Park, I-S., Han, D. H., Kim, E. S., Ahn, S. T., and Lee, M. Y., IEDM 94, 835 (1994).Google Scholar
5.Fujikawa, H. and Taga, Y., J. Appl. Phys. 75, 2538 (1994).CrossRefGoogle Scholar
6.Negas, T. and Davies, P., Materials and Processes for Wireless Communications; Ceramic Transactions, edited by Negas, T. and Davies, P. (Am. Ceram. Soc., Westerville, OH, 1995), Vol. 53, p. 179.Google Scholar
7.Negas, T., Yeager, G., Bell, S., Coats, N., and Minis, I., Am. Ceram. Soc. Bull. 72, 80 (1993).Google Scholar
8.Nishigaki, S., Kato, H., Yano, S., and Kamimura, K., Ceram. Bull. 66, 1405 (1987).Google Scholar
9.Millet, J. M., Roth, R. S., Ettlinger, L. D., and Parker, H. S., J. Solid State Chem. 67, 259 (1987).CrossRefGoogle Scholar
10.Roth, R. S., Ettlinger, L. D., and Parker, H. S., J. Solid State Chem. 68, 330 (1987).CrossRefGoogle Scholar
11.Shannon, R. D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
12.Itoh, Y., Miyazawa, S., Yamada, T., and Iwasaki, H., Jpn. J. Appl. Phys. 9, 157 (1970).CrossRefGoogle Scholar