Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T07:00:43.979Z Has data issue: false hasContentIssue false

Dielectric, piezoelectric, and pyroelectric anisotropy in KCl-modified grain-oriented bismuth vanadate ceramics

Published online by Cambridge University Press:  31 January 2011

K. Shantha
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
K. B. R. Varma*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
*
a)Address all correspondence to this author.
Get access

Abstract

The effect of the additive KCl, on the structural, microstructural, and polar properties of bismuth vanadate (BiV) ceramics is investigated. The scanning electron microscopic (SEM) studies reveal a remarkable modification in the microstructure and the occurrence of high grain-orientation (75%) on KCl addition. The energy dispersive x-ray (EDX) analyses indicate the presence of chemically inhomogeneous distribution of KCl, with core-shell-like grain structure. The KCl-modified BiV samples exhibit a broad and depressed phase transition, with no frequency dispersion, as a result of the increased internal stress and the formation of core-shell-like grain structure. Significant anisotropies are observed in the dielectric, piezoelectric, and pyroelectric responses of these grain-oriented ceramic samples. These samples are characterized by near rectangular ferroelectric hysteresis loops, with a significant anisotropy in the Pr (Pr┴/Pr = 2.43, at 300 K) and Ec (Ec/Ec= 2.22, at 300 K) values between the directions parallel and perpendicular to the cold-pressing axis.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bush, A. A. and Venevtsev, Yu. N., Russ. J. Inorg. Chem. 31 (5), 769 (1986).Google Scholar
2.Osipyan, V. G., Savchenko, L. M., Elbakyan, V. L., and Avakyan, P. B., Inorg. Mat. 23, 467 (1987).Google Scholar
3.Borisov, V. N., Poplavko, Yu. M., Avakyan, P. B., and Osipyan, V. G., Sov. Phys. Solid State 30 (5), 904 (1988).Google Scholar
4.Varma, K.B.R, Subbanna, G.N., Guru Row, T.N., and Rao, C.N.R, J. Mater. Res. 5, 2718 (1990).CrossRefGoogle Scholar
5.Prasad, K. V. R. and Varma, K. B. R., J. Mater. Sci. 30, 6345 (1995).CrossRefGoogle Scholar
6.Prasad, K. V. R. and Varma, K. B. R., Mater. Chem. Phys. 38, 406 (1994).CrossRefGoogle Scholar
7.Abraham, F., Debreuille Gresse, M. F., Mairesse, G., and Nowogrocki, G., Solid State Ionics 28–30, 529 (1988).CrossRefGoogle Scholar
8.Goodenough, J. B., Manthiram, A., Paranthaman, M., and Zhen, Y. S., Solid State Ionics 52, 105 (1992).CrossRefGoogle Scholar
9.Shantha, K., Phillip, S., and Varma, K. B. R., Mater. Chem. Phys. 48 (48), (1997).CrossRefGoogle Scholar
10.Shantha, K. and Varma, K. B. R., J. Mater. Chem. 7 (8), 1565 (1997).CrossRefGoogle Scholar
11.Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19 (1), 31 (1980).CrossRefGoogle Scholar
12.Igarashi, H., Matsunaga, K., Tanai, T., and Ogazaki, K., Am. Ceram. Soc. Bull. 57 (9), 815 (1978).Google Scholar
13.Sakata, K., Takenaka, T., and Shoji, K., Ferroelectrics 22, 825 (1978).CrossRefGoogle Scholar
14.Lotgering, F. K., J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
15.Byer, R. L. and Roundy, C. B., Ferroelectrics 3, 333 (1972).CrossRefGoogle Scholar
16.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, New York, 1976).Google Scholar
17.Yang, C. F., Jpn. J. Appl. Phys. 36, 3548 (1997).CrossRefGoogle Scholar
18.Tan, Q., Xu, Z., Li, J. F., and Viehland, D., J. Appl. Phys. 80, 5866 (1996).CrossRefGoogle Scholar
19.Tan, Q., Li, J. F., and Viehland, D., Philos. Mag. B 76 (1), 59 (1997).CrossRefGoogle Scholar
20.Prasad, K. V. R., Ph.D. Thesis, Indian Institute of Science (1994).Google Scholar
21.Cross, L. E., Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
22.Uchino, K. and Nimura, S., Ferroelectrics Lett. 44, 55 (1982).CrossRefGoogle Scholar
23.Jimenez, B., De Frutos, J., and Alemany, C., J. Phys. Chem. Solids 48 (10), 877 (1987).CrossRefGoogle Scholar
24.Choo, W.K. and Lee, M.H., J. Appl. Phys. 53, 7355 (1982).CrossRefGoogle Scholar
25.Armstrong, T.R. and Buchanan, R.C., J. Am. Ceram. Soc. 73 (5), 1268 (1990).CrossRefGoogle Scholar
26.Park, Y. and Song, S. A., Mater. Sci. Eng. B47, 28 (1997).CrossRefGoogle Scholar
27.Mairesse, G., Fast Ion Transport in Solids, edited by Scrosati, B. (Kluwer Academic Publishers, New York, 1993), p. 271.CrossRefGoogle Scholar