Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T15:40:51.915Z Has data issue: false hasContentIssue false

Dielectric characteristics and diffuse ferroelectric phase transition in Sr4La2Ti4Nb6O30 tungsten bronze ceramics

Published online by Cambridge University Press:  01 July 2006

X.L. Zhu
Affiliation:
Department of Material Science and Engineering, Zhejiang University,Hangzhou 310027, People's Republic of China
X.M. Chen*
Affiliation:
Department of Material Science and Engineering, Zhejiang University,Hangzhou 310027, People's Republic of China
X.Q. Liu
Affiliation:
Department of Material Science and Engineering, Zhejiang University,Hangzhou 310027, People's Republic of China
Y. Yuan
Affiliation:
Department of Material Science and Engineering, Zhejiang University,Hangzhou 310027, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, Sr4La2Ti4Nb6O30 ceramics with tetragonal filled tungsten bronze structure were prepared, and the dielectric characteristics and ferroelectric transition were investigated. The room-temperature dielectric constant of the present ceramics showed very weak frequency dependency; it decreased from 570.4 to 561.7 when the frequency varied from 200 Hz to 1 MHz, and a comparatively low-dielectric loss was observed (in the order of 10−3). Unlike the situation for Ba4Ln2Ti4Nb6O30 (Ln = La, Nd and Sm), Sr4La2Ti4Nb6O30 ceramics showed a diffuse ferroelectric phase transition, and the diffuseness exponent γ was 1.61. Moreover, the obvious frequency dispersion was observed over a broad frequency range from 200 Hz to 1 MHz, and the maximum dielectric constant temperature Tmax shifted to higher temperatures with increasing frequency. The dielectric data agreed closely with the Vogel–Fulcher relationship. We concluded that tungsten bronze Sr4La2Ti4Nb6O30 has the relaxor ferroelectric nature.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohsato, H.: Science of tungsten bronze-type like Ba6−3xR 8+2xTi18O54 (R = rare earth) microwave dielectric solid solution. J. Eur. Ceram. Soc. 21, 2703 (2001).CrossRefGoogle Scholar
2.Raju, M.R.R., Choudhary, R.N.P.: Effect of Zr+4 ion substitution on the structural, dielectric and electrical properties of Sr5LaTi3Nb7O30 ceramics. J. Mater. Sci. 39, 1765 (2004).CrossRefGoogle Scholar
3.Neurgaonkar, R.R., Nelson, J.G., Oliver, J.R.: Ferroelectric properties of the tungsten bronze M2+6M4+2Nb8O30 solid solution systems. Mater. Res. Bull. 27, 677 (1992).CrossRefGoogle Scholar
4.Wakiya, N., Wang, J.K., Saiki, A., Shinozaki, K., Mizutani, N.: Synthesis and dielectric properties of Ba1−xR2x /3Nb2O6 (R: rare earth) with tetragonal tungsten bronze structure. J. Eur. Ceram. Soc. 19, 1071 (1999).CrossRefGoogle Scholar
5.Chen, X.M., Yang, J.S.: Dielectric characteristics of ceramics in BaO–Nd2O3– TiO2–Ta2O5 system. J. Eur. Ceram. Soc. 19, 139 (1999).CrossRefGoogle Scholar
6.Hwang, Y.K., Kwon, Y.U.: Syntheses and electrical properties of tetragonal tungsten bronze type solid solution Ba6−xLax Nb10O30+δ(x = 0, 1, 2, 3) and Sr6Nb10O30. Mater. Res. Bull. 32, 1495 (1997).CrossRefGoogle Scholar
7.Ventiurini, E.L., Spencer, E.G., Balmann, A.A.: Elasto-optic properties of Bi12GeO20, Bi12SiO20, and Srx Ba1−x Nb2O6. J. Appl. Phys. 40, 1622 (1969).CrossRefGoogle Scholar
8.Karaki, T., Miyashita, K., Nakatsuji, M., Adachi, M.: Growth and optical properties of ferroelectric K3Li2Nb5O30 single crystals. Jpn. J. Appl. Phys. 37, 5277 (1998).CrossRefGoogle Scholar
9.Guo, R., Bhalla, A.S., Randall, C.A., Cross, L.E.: Dielectric and pyroelectric properties of the morphotropic phase boundary lead barium niobate (PBN) single crystals at low temperature (10– 300 K). J. Appl. Phys. 67, 6405 (1990).CrossRefGoogle Scholar
10.Ikeda, T., Haraguchi, T., Onodera, Y., Saito, T.: Growth and optical properties of ferroelectric K3Li2Nb5O15 single crystal. Jpn. J. Appl. Phys. 10, 987 (1971).CrossRefGoogle Scholar
11.Stephenson, N.C.: The crystal structure of the tetragonal bronze Ba6Ti2Nb8O30. Acta Crystallogr. 18, 496 (1965).CrossRefGoogle Scholar
12.Chen, X.M., Sun, Y.H., Zheng, X.H.: High-∈ and low loss dielectric ceramics in BaO–La2O3–TiO2–Ta2O5 System. J. Eur. Ceram. Soc. 23–10, 1571 (2003).CrossRefGoogle Scholar
13.Chen, X.M., Xu, Z.Y., Li, J.: Dielectric ceramics in BaO–Sm2O3–TiO2–Ta2O5 quaternary system. J. Mater. Res. 15, 125 (2000).CrossRefGoogle Scholar
14.Zheng, X.H., Chen, X.M.: Crystal structure and dielectric properties of ferroelectric ceramics in the BaO–Sm2O3–TiO2–Nb2O5 system. Solid State Commun. 125, 449 (2003).CrossRefGoogle Scholar
15.Zheng, X.H., Chen, X.M.: Dielectric ceramics with tungsten-bronze structure in the BaO–Nd2O3–TiO2–Nb2O5 system. J. Mater. Res. 17, 1664 (2002).CrossRefGoogle Scholar
16.Kirk, C.A., Stennett, M.C., Reaney, I.M., West, A.R.: A new relaxor ferroelectric, Ba2LaTi2Nb3O15. J. Mater. Chem. 12, 2609 (2002).CrossRefGoogle Scholar
17.Miles, G.C., Stennett, M.C., Reaney, I.M., West, A.R.: Temperature-dependent crystal structure of ferroelectric Ba2LaTi2Nb3O15. J. Mater. Chem. 15, 798 (2005).CrossRefGoogle Scholar
18.Sun, Y.H., Chen, X.M., Zheng, X.H.: Tungsten bronze type dielectrics in SrO–Sm2O3–TiO2–Nb2O5 system and their dielectric anomaly. J. Appl. Phys. 96, 7435 (2004).CrossRefGoogle Scholar
19.Roberts, G.L., Cava, R.J., Peck, W.F. Jr. Krajewski, J.J.: Dielectric properties of barium titanium. J. Mater. Res. 12, 526 (1997).CrossRefGoogle Scholar
20.Raju, M.R. Ranga, Choudhary, R.N.P.: Diffuse phase transition in Sr5RTi3Nb7O30 (R=La, Nd and Sm). J. Phys. Chem. Solids 64, 847 (2003).CrossRefGoogle Scholar
21.Ravez, J., Simon, A.: Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162, 260 (2001).CrossRefGoogle Scholar
22.Hornebecq, V., Elissalde, C.: Study of disorder in a tetragonal tungsten bronze ferroelectric relaxor: A structural approach. J. Appl. Crystallogr. 33, 1037 (2000).CrossRefGoogle Scholar
23.Fang, L., Zhang, H., Yuan, R.Z., Dronskowski, R.: Characterization and dielectric properties of Sr4La2Ti4M6O30 (M = Nb, Ta) ceramics. J. Mater. Sci. 15, 699 (2004).Google Scholar
24.Rodriguez-Carvajal, J.: Recent developments of the program FULLPROF, in Commission on Powder Diffraction (IμCr). Newsletter 26, 12 (2001).Google Scholar
25.Viehland, D., Jang, S.J., Cross, L.E.: Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916 (1990).CrossRefGoogle Scholar
26.Pilgrim, S.M., Sutherland, A.E., Winzer, S.R.: Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122 (1990).CrossRefGoogle Scholar