Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T01:40:40.360Z Has data issue: false hasContentIssue false

Diamond growth on thin Ti wafers via chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

Qijin Chen*
Affiliation:
State Key Laboratory of Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
Zhangda Lin
Affiliation:
State Key Laboratory of Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
*
a)Present address: Department of Physics, The University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637.
Get access

Abstract

Diamond film was synthesized on thin Ti wafers (as thin as 40 μm) via hot filament chemical vapor deposition (HFCVD). The hydrogen embrittlement of the titanium substrate and the formation of a thick TiC interlayer were suppressed. A very low pressure (133 Pa) was employed to achieve high-density rapid nucleation and thus to suppress the formation of TiC. Oxygen was added to source gases to lower the growth temperature and therefore to slow down the hydrogenation of the thin Ti substrate. The role of the very low pressure during nucleation is discussed, providing insight into the nucleation mechanism of diamond on a titanium substrate. The as-grown diamond films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and x-ray analysis.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spitsyn, B.V., Bouilov, L.C., and Deryaguin, B.V., J. Cryst. Growth 52, 219 (1981).Google Scholar
2Matsumoto, M., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 71, L183 (1982).CrossRefGoogle Scholar
3Kamo, M., Sato, Y., Matosumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
4Ravi, K.V. and Joshi, A., Appl. Phys. Lett. 58, 246 (1991).CrossRefGoogle Scholar
5Angus, J.C., Wang, Y., and Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).CrossRefGoogle Scholar
6Yugo, S., Kimura, T., Kanai, H., and Adachi, Y., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 217.Google Scholar
7Mottish, A. A. and Pehtsson, P. E., Appl. Phys. Lett. 59, 417 (1991).Google Scholar
8Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).Google Scholar
9Stoner, B.R., Ma, G-H.M., Wolter, S.D., and Glass, J.T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
10Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
11Jiang, X., Schiffmann, K., Westphal, A., and Klages, C-P., Appl. Phys. Lett. 63, 1203 (1993).CrossRefGoogle Scholar
12Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
13Shih, D. S., Robertson, I.M., and Birnbaum, H. K., Acta Metall. 36, 111 (1988).CrossRefGoogle Scholar
14Numakura, H. and Koiwa, M., Acta Metall. 32, 1799 (1984).CrossRefGoogle Scholar
15Park, S.S. and Lee, J. Y., J. Appl. Phys. 69, 2618 (1991).Google Scholar
16Muranaka, Y., Yamashita, H., and Miyadera, H., J. Vac. Sci. Technol. A 9, 76 (1991).CrossRefGoogle Scholar
17Kim, T-H. and Kobayashi, T., Jpn. J. Appl. Phys. 33, L459 (1994).Google Scholar
18Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).CrossRefGoogle Scholar
19Kawato, T., and Kondo, K-I., Jpn. J. Appl. Phys. 26, 1429 (1987).Google Scholar
20Konkoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).CrossRefGoogle Scholar
21Howard, W. N., Spear, K.E., and Frenklach, M., Appl. Phys. Lett. 63, 2641 (1993).Google Scholar