Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:28:39.407Z Has data issue: false hasContentIssue false

Diamond growth on carbide surfaces using a selective etching technique

Published online by Cambridge University Press:  03 March 2011

K.J. Grannen
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208–3108
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208–3108
Get access

Abstract

Microwave plasma-enhanced chemical vapor deposition of diamond films on silicon carbide and tungsten carbide (with 6% cobalt) surfaces using fluorocarbon gases has been demonstrated. No diamond powder pretreatment is necessary to grow these films with a (100) faceted surface morphology. The diamond films are characterized by scanning electron microscopy and Raman spectroscopy. The proposed nucleation and growth mechanism involves etching of the noncarbon component of the carbide by atomic fluorine to expose surface carbon atoms and diamond nucleation and growth on these exposed carbon atoms. Hydrogen is necessary in the growth process to limit the rapid etching of the carbide substrates by corrosive fluorine atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yarbrough, W. A., J. Am. Ceram. Soc. 75, 3179 (1992).CrossRefGoogle Scholar
2Deguchi, M., Kitabatake, M., Hirao, T., Mori, Y., Ma, J. S., Ito, T., and Hiraki, A., Appl. Surf. Sci. 60–61, 291 (1992).CrossRefGoogle Scholar
3Lin, S. J., Lee, S. L., Hwang, J., and Lin, T. S., J. Electrochem. Soc. 139, 3255 (1992).CrossRefGoogle Scholar
4Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., Appl. Phys. Lett. 60, 2083 (1992).Google Scholar
5Ong, T. P., Xiong, F., Chang, R. P. H., and White, C. W., J. Mater. Res. 7, 2429 (1992).CrossRefGoogle Scholar
6Kirkpatrick, A. R. and Ward, B. W., J. Vac. Sci. Technol. B 9, 3095 (1991).CrossRefGoogle Scholar
7Meilunas, R., Chang, R. P. H., Liu, S. Z., and Kappes, M. M., Nature 354, 271 (1991).CrossRefGoogle Scholar
8Meilunas, R., Chang, R. P. H., Lui, S. Z., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
9Dubray, J. J., Pantano, C. G., Meloncelli, M., and Bertran, E., J. Vac. Sci. Technol. A 9, 3012 (1991).CrossRefGoogle Scholar
10Kanetkar, S. M., Matera, G., Chen, X. K., Pramanick, S., Tiwari, P., Narayan, J., Pfeiffer, G., and Paesler, M., J. Electron. Mater. 20, 141 (1991).CrossRefGoogle Scholar
11Pehrsson, P. E.Glesener, J., and Morrish, A., Thin Solid Films 212, 81 (1992).Google Scholar
12Barnes, P. N. and Wu, R. L. C., Appl. Phys. Lett. 62, 37 (1993).CrossRefGoogle Scholar
13Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
14Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).Google Scholar
15Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaneko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
16Dubray, J. J., Pantano, C. G., and Yarbrough, W. A., J. Appl. Phys. 72, 3136 (1992).CrossRefGoogle Scholar
17Rudder, R. A., Posthill, J. B., and Markunas, R. J., Electron Lett. 25, 1220 (1989).Google Scholar
18Patterson, D. E., Bai, B. J., Chu, C. J., Hauge, R. H., and Margrave, J. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2-C3, Pittsburgh, PA, 1991), p. 433.Google Scholar
19Kadano, M., Inoue, T., Miyanaga, A., and Yamazaki, S., Appl. Phys. Lett. 61, 772 (1992).CrossRefGoogle Scholar
20Hukka, T., Rawles, R., and D'Evelyn, M., Thin Solid Films 225, 212 (1993).Google Scholar
21Grannen, K. J., Tsu, D. V., Meilunas, R. J., and Chang, R.P.H., Appl. Phys. Lett. 59, 745 (1991).CrossRefGoogle Scholar
22Meilunas, R., Wong, M. S., Ong, T. P., and Chang, R.P.H., in Laser and Particle-Beam Modification of Chemical Processes on Surfaces, edited by Johnson, A. W., Loper, G. L., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 129, Pittsburgh, PA, 1989), p. 533.Google Scholar
23Angus, J. C., Wang, Y., and Sunkara, M., Ann. Rev. Mater. Sci. 21, 221 (1991).Google Scholar
24van der Drift, A., Phillips Res. Rep. 22, 267 (1967).Google Scholar
25JANAF Thermochemical Tables 14, supplement 1 (1985).Google Scholar
26Grannen, K. J., Xiong, F., and Chang, R. P. H., Surf. Coat. Technol. 57, 155 (1993).Google Scholar
27Suguira, J., Lu, W. J., Cadien, K. C., and Steckl, A. J., J. Vac. Sci. Technol. B 4 (1), 349 (1986).CrossRefGoogle Scholar
28Palmour, J. W., Davis, R. F., Wallett, T. M., and Bhasin, K. B., J. Vac. Sci. Technol. A 4, 590 (1986).CrossRefGoogle Scholar
29Chang, C. Y., Fang, Y. K., Huang, C. F., and Wu, B. S., J. Electrochem. Soc. 132, 1418 (1985).Google Scholar
30Padiyath, R., Wright, R. L., Chaudhry, M. I., and Babu, S. V., Appl.Phys. Lett. 58, 1053 (1991).CrossRefGoogle Scholar
31Balooch, M. and Olander, D. R., Surf. Sci. 261, 321 (1992).Google Scholar
32Park, D. S., McNallan, M.J., Park, C., and Liang, W. S., J. Am. Ceram. Soc. 73, 1323 (1990).CrossRefGoogle Scholar
33Tang, C. C. and Hess, D. W., J. Electrochem. Soc. 131, 115 (1984).CrossRefGoogle Scholar
34Kumar, R., Lades, C., and Hudson, G., Solid State Technol. 19, 54 (1976).Google Scholar