Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T21:45:56.085Z Has data issue: false hasContentIssue false

Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction

Published online by Cambridge University Press:  31 January 2011

John Freim
Affiliation:
Department of Applied Mechanics and Engineering Sciences and Materials Science Program, University of California at San Diego, La Jolla, California 92093–0411
J. McKittrick
Affiliation:
Department of Applied Mechanics and Engineering Sciences and Materials Science Program, University of California at San Diego, La Jolla, California 92093–0411
W. J. Nellis
Affiliation:
Lawrence Livermore National Laboratory, University of California, Institute of Geophysics and Planetary Physics and H Division, Livermore, California 94550
J. D. Katz
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, MST-4, Los Alamos, New Mexico 87545
Get access

Abstract

A rapidly solidified alumina-zirconia eutectic material containing nanocrystalline t-ZrO2 has been synthesized. When heated, the microstructure contained a mixture of t-ZrO2 and m-ZrO2, each of which can facilitate toughening of the composite. Dynamic shock compaction was used to accelerate densification of the material, producing crack-free specimens with high green densities. After sintering to densities measuring ∼95% of theoretical, the shock-compacted specimens fabricated with unstabilized alumina-zirconia were extensively microcracked due to an overabundance of the m-ZrO2 phase. Experiments employing Y2O3 as a chemical stabilizer have shown that the extent of the phase transformation can be controlled, and the microstructure that developed in the stabilized material contained an acceptable level of the microcrack generating m-ZrO2 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Garvie, R. C. and Hannink, R. H., Nature (London) 228, 703 (1975).Google Scholar
2.Wang, J. and Stevens, R., J. Mater. Sci. 24, 3421 (1989).CrossRefGoogle Scholar
3.Green, D. J., Hannink, R. H. J., and Swain, M. V., in Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989), p. 17.Google Scholar
4.Stevens, R. and Evans, P. A., Trans. Br. Ceram. Soc. 83, 28 (1984).Google Scholar
5.Rühle, M., Evans, A. G., McMeeking, R. M., Charalambides, P. G., and Hutchinson, J.W., Acta Metall. 35, 2701 (1987).Google Scholar
6.Garvie, R. C. and Swain, M. V., J. Mater. Sci. 20, 1193 (1985).Google Scholar
7.Ruh, H. and Evans, A. G., J. Am. Ceram. Soc. 66, 328 (1983).Google Scholar
8.Claussen, N., Steeb, J., and Pabst, R. F., J. Am. Ceram. Soc. 56, 559 (1977).Google Scholar
9.McMeeking, R. M. and Evans, A.G., J. Am. Ceram. Soc. 65, 242 (1981).CrossRefGoogle Scholar
10.Lange, F. F., J. Mater. Sci. 17, 235 (1982).Google Scholar
11.Becher, P. F., Acta Metall. 34, 1885 (1986).Google Scholar
12.Rühle, M., Claussen, N., and Heuer, A., J. Am. Ceram. Soc. 69, 195 (1986).CrossRefGoogle Scholar
13.Faber, K. T., in Advances in Ceramics, vol. 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (The American Ceramic Society, Westerville, OH, 1984), p. 293.Google Scholar
14.Claussen, N., J. Am. Ceram. Soc. 59, 49 (1976).CrossRefGoogle Scholar
15.Green, D. J., J. Am. Ceram. Soc. 65, 610 (1982).Google Scholar
16.Zallen, R., The Physics of Amorphous Solids (Wiley, New York, 1983).Google Scholar
17.Jacobson, L. A. and McKittrick, J., Mater. Sci. Eng. R11, 355 (1994).Google Scholar
18.Claussen, N., Lindemann, G., and Petzow, G., Mater. Sci. Monogr. 16, 489 (1983).Google Scholar
19.McKittrick, J., Kalonji, G., and Ando, T., J. Non-Cryst. Solids 94, 163 (1987).Google Scholar
20.Homeny, J. and Nick, J.J., Mat. Sci. Eng. A127, 123 (1990).Google Scholar
21.Owen, D. M., Ph.D. Thesis, University of California, San Diego (1993).Google Scholar
22.Xue, L. A. and Brook, R. J., J. Am. Ceram. Soc. 72, 341 (1989).Google Scholar
23.Lange, F. F. and Hirlinger, M. M., J. Am. Ceram. Soc. 72, 341 (1989).Google Scholar
24.Coble, R. L., J. Appl. Phys. 32, 793 (1961).CrossRefGoogle Scholar
25.Nellis, W. J., Shock Compression of Solids: A Tutorial, UCRL-JC-103176 (1990).Google Scholar
26.Bergmann, O. R. and Barrington, J.A., J. Am. Ceram. Soc. 49, 503 (1966).CrossRefGoogle Scholar
27.Benson, D. J., Nellis, W. J., and Moriarity, J.A., in Shock-Wave and High-Strain-Rate Phenomena in Materials, edited by Meyers, M. A., Murr, L. E., and Staudhammer, K. P. (Marcel Dekker, New York, 1992), p. 981.Google Scholar
28.Morosin, B., Graham, R. A., and Hellmann, J. R., in Shock Waves in Condensed Matter, edited by Asay, J.R., Graham, R. A., and Straub, G. K. (Elsevier, Amsterdam, The Netherlands, 1984), p. 383.Google Scholar
29.Beauchamp, E. K., Carr, M.J., and Graham, R. A., J. Am. Ceram. Soc. 68, 696 (1985).CrossRefGoogle Scholar
30.Prümmer, R. A. and Ziegler, G., Powder Metall. Int. 9, 11 (1977).Google Scholar
31.Meyers, M. A. and Wang, S.L., Acta Metall. 36, 925 (1988).Google Scholar
32.Gourdin, W. H., Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J.H. Jr, Chen, Y., and Sibley, W. A. (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 307.Google Scholar
33.Hoenig, C. L. and Yust, C. S., Am. Ceram. Soc. Bull. 60, 1175 (1981).Google Scholar
34.Bengisu, M., Inal, O., and Hellman, J.R., J. Am. Ceram. Soc. 73, 346 (1990).Google Scholar
35.Tunaboylu, B., McKittrick, J., and Nellis, W. J., J. Am. Ceram. Soc. 77, 1605 (1994).Google Scholar
36.Garvie, R. C. and Nicholson, P.S., J. Am. Ceram. Soc. 55, 303 (1972).CrossRefGoogle Scholar
37.Balzar, D., J. Appl. Crystallogr. 25, 559 (1992).Google Scholar
38.Griffith, A. A., Philos. Trans. R. Soc. London A221, 163 (1920).Google Scholar
39.Meyers, M.A., Shang, S.S., and Hokamoto, K., in Shock Waves in Materials Science, edited by Sawaoka, A. B. (Springer-Verlag, Tokyo, 1993), p. 145.Google Scholar
40.McKittrick, J., Tunaboylu, B., and Katz, J., J. Mater. Sci. 29, 21192125 (1994).Google Scholar