Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T15:06:35.587Z Has data issue: false hasContentIssue false

Determination of diamond [100] and [111] growth rate and formation of highly oriented diamond film by microwave plasma-assisted chemical vapor deposition

Published online by Cambridge University Press:  03 March 2011

Hideaki Maeda
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
Kyo Ohtsubo
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
Miki Irie
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
Nobutaka Ohya
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
Katsuki Kusakabe
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
Shigeharu Morooka*
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hazozaki, Higashi-ku, Fukuoka 812–81, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

A novel method was proposed for measuring the epitaxial growth rate of diamond by microwave plasma-assisted chemical vapor deposition (MPCVD). Cubo-octahedral crystals were formed on an Si(100) wafer and were used as the substrate in the homoepitaxial growth. Growth rates of the {100} and {111} were simultaneously measured from the change in the top view size of crystals. Thus, the relative growth rate of {100} to {111} was obtained without any limitation of its value. The homoepitaxial growth rate was strongly affected by the type of diamond faces, CH4 concentration in the gas phase, and deposition temperature. The growth rate of {100} was more dependent on CH4 concentration than that of {111}, while the activation energy for the [100] growth was about half that for the [111] growth. These tendencies were in accord with growth mechanisms proposed for each diamond plane. Reaction conditions were optimized based on the relative growth rate of (100) to (111) planes, and a highly oriented (100) diamond film with a quite smooth surface was formed on an Si(100) wafer.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
2Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
3Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
4Matsumoto, S., J. Mater. Sci. Lett. 4, 600 (1985).CrossRefGoogle Scholar
5Suzuki, K., Sawabe, A., Yasuda, H., and Inuzuka, T., Appl. Phys. Lett. 50, 728 (1987).CrossRefGoogle Scholar
6Kurihara, K., Sasaki, K., Kawarada, M., and Koshino, K., Appl. Phys. Lett. 52, 437 (1988).CrossRefGoogle Scholar
7Hirose, Y. and Mitsuizumi, M., New Diamond (in Japanese) 10 (3), 34 (1988).Google Scholar
8Stoner, B.R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
9Wolter, S.D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
10Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Füsser, H. J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
11Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).CrossRefGoogle Scholar
12Kweon, D-W., Lee, J-Y., and Kim, D., J. Appl. Phys. 69, 8329 (1991).CrossRefGoogle Scholar
13Snail, K. A. and Marks, C.M., Appl. Phys. Lett. 60, 3135 (1992).CrossRefGoogle Scholar
14Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).CrossRefGoogle Scholar
15Chu, C. J., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., Appl. Phys. Lett. 61, 1393 (1992).CrossRefGoogle Scholar
16Fujimori, N., Proceedings of Advanced Materials '94, edited by Kamo, M., Kanda, H., Matsui, Y., and Sekine, T. (NIRIM, Japan, 1994), p. 146.Google Scholar
17Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).CrossRefGoogle Scholar
18Wild, C., Koidl, P., Müller-Sebert, W., and Ecerman, T., Electrochem. Soc. Proc. 91–8, 224 (1991).Google Scholar
19Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Relat. Mater. 2, 158 (1993).CrossRefGoogle Scholar
20Wild, C., Kohl, R., Herres, N., Müller–Sebert, W., and Koidl, P., Diamond Relat. Mater. 3, 373 (1994).CrossRefGoogle Scholar
21Clausing, R. E., Heatherly, L., Horton, L. L., Specht, E. D., Begun, G.M., and Wang, Z. L., Diamond Relat. Mater. 1, 411 (1992).CrossRefGoogle Scholar
22Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., J. Cryst. Growth 121, 507 (1992).CrossRefGoogle Scholar
23Maeda, H., Ikari, S., Okubo, T., Kusakabe, K., and Morooka, S., J. Mater. Sci. 28, 129 (1993).CrossRefGoogle Scholar
24Maeda, H., Irie, M., Hino, T., Kusakabe, K., and Morooka, S., Diamond Relat. Mater. 3, 1072 (1994).CrossRefGoogle Scholar
25Maeda, H., Irie, M., Kusakabe, K., and Morooka, S., Advances in New Diamond Science and Technology (Proc. 4th Int. Conf. New Diamond Sci. & Technol.), edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (Myu, Tokyo, 1994), p. 153.Google Scholar
26Maeda, H., Irie, M., Hino, T., Kusakabe, K., and Morooka, S., J. Mater. Res. 10, 158 (1995).CrossRefGoogle Scholar
27Suesada, T., Ohtani, K., Nakamura, N., and Kawarada, H., Advances in New Diamond Science and Technology (Proc. 4th Int. Conf. New Diamond Sci. & Technol.), edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (Myu, Tokyo, 1994), p. 267.Google Scholar
28Tsuno, T., Imai, T., Nishibayashi, Y., Hamada, K., and Fujimori, N., Jpn. J. Appl. Phys. 30, 1063 (1991).CrossRefGoogle Scholar
29Kawarada, H., Aoki, M., Sasaki, H., and Tsugawa, K., Diamond Relat. Mater. 3, 961 (1994).CrossRefGoogle Scholar
30Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. 98, 7073 (1994).CrossRefGoogle Scholar
31Aizawa, T., Ando, T., Kamo, M., and Sato, Y., Phys. Rev. B 48, 18348 (1993).CrossRefGoogle Scholar
32Ando, T., Aizawa, T., Yamamoto, K., Sato, Y., and Kamo, M., Diamond Relat. Mater. 3, 975 (1994).CrossRefGoogle Scholar
33Frenklach, M. and Spear, K.E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
34Peploski, J., Thompson, D. L., and Raff, L.M., J. Phys. Chem. 96, 8538 (1992).CrossRefGoogle Scholar
35Muranaka, Y., Yamashita, H., and Miyadera, H., Diamond Relat. Mater. 3, 313 (1994).CrossRefGoogle Scholar
36Kamo, M., Ando, T., Sato, Y., Bando, K., and Ishikawa, J., Diamond Relat. Mater. 1, 104 (1992).CrossRefGoogle Scholar
37Ashfold, M.N.R., May, P. W., and Rego, C. A., Chem. SOC. Rev. 23, 21 (1994).CrossRefGoogle Scholar