Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:26:17.775Z Has data issue: false hasContentIssue false

Deposition of zinc sulfide quantum dots from a single-source molecular precursor

Published online by Cambridge University Press:  31 January 2011

N. Revaprasadu
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AZ, United Kingdom, and Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886
M. Azad Malik
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AZ, United Kingdom
P. O'Brien
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AZ, United Kingdom
G. Wakefield
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
Get access

Abstract

Nanoparticles of ZnS capped with tri-n-octylphosphineoxide (TOPO) and close to monodispersed have been prepared by a single-source route using ethyl(di-ethyldithiocarbamato)zinc(II) as a precursor. The nanoparticles obtained showed quantum size effects in their optical spectra, and the photoluminescence spectrum showed a broad emission that could be attributed to the surface traps. A blue shift of 0.31 eV in relation to the bulk material was observed. The selected area electron diffraction, x-ray diffraction pattern and transmission electron microscopy showed the material to be of the zinc blend structure. The crystallinity of the material was also evident from high-resolution transmission electron microscopy, which gave well-defined images of nano-sized particles with clear lattice fringes and a spacing of approximately 3 Å, corresponding to the (111) planes of the cubic crystalline ZnS phase and in the size range of 3.9–4.9 nm. The presence of strong phosphorus peak in the energy dispersion analytical x-ray pattern, together with a shift in infrared band for P = O of TOPO showed that the particles were TOPO capped.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Duongong, D., Ramsden, J., and Gratzel, M., J. Am. Chem. Soc. 104, 2977 (1982).CrossRefGoogle Scholar
2.Rossetti, R., Ellison, J.L., Gibson, J.M., and Brus, L.E, J. Chem. Phys. 80A, 4464 (1984).Google Scholar
3.Henglein, A., Chem. Rev. 89, 1861 (1989).CrossRefGoogle Scholar
4.Steigerwald, M.L., and Brus, L.E., Acc. Chem. Rev. 23, 183 (1990).CrossRefGoogle Scholar
5.Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991).CrossRefGoogle Scholar
6.Weller, H., Adv. Mater. 5, 88 (1993).Google Scholar
7.Li, X., Fryer, J.R., and Cole-Hamilton, D.J., J. Chem. Soc. Chem. Commun. 1715 (1994).CrossRefGoogle Scholar
8.Haggata, S.W., Cole-Hamilton, D.J., and Fryer, J.R., J. Mater. Chem. 7, 1969 (1997).Google Scholar
9.Green, M. and O'Brien, P., Adv. Mater. Opt. Electron. 7, 277 (1997).3.0.CO;2-6>CrossRefGoogle Scholar
10.Sooklal, K., Cullum, B.S., Angel, S.M., and Murphy, C.J., J. Phys. Chem. 100, 4551 (1996).CrossRefGoogle Scholar
11.Khosravi, A.A., Kundu, M., Kuruvilla, B.A., Shekhawat, G.S., Gupta, R.P., Vyas, P.D., and Kulkarni, S.K., Appl. Phys. Lett. 67(17), 2506 (1995).Google Scholar
12.Chen, W., Wang, Z., Lin, Z., and Lin, L., Appl. Phys. Lett. 70(11), 1465 (1997).CrossRefGoogle Scholar
13.Heinglein, A. and Gutierretz, M., Ber. Bunsen-Ges Phys. Chem. 87, 852 (1983).CrossRefGoogle Scholar
14.Rossetti, R., Hull, R., Gibson, J.M., and Brus, L.E, J. Chem. Phys. 82, 552 (1985).Google Scholar
15.Yu, J., Liu, H., Wang, Y., Fernandez, F.E., Jia, W., Sun, L., Jin, C., Li, D., and Huang, S., Optics Lett. 22(12), 1913 (1997).Google Scholar
16.Yang, Y., Huang, J., Liu, S., and Shen, J., J. Mater. Chem. 7(1), 131 (1997).Google Scholar
17.Tan, M., Cai, W., and Zhang, L., Appl. Phys. Lett. 71(25), 3697 (1997).CrossRefGoogle Scholar
18.Li, Y., Ding, Y., Qian, Y., Zhang, Y., and Yang, L., Inorg. Chem. 37, 2844 (1998).CrossRefGoogle Scholar
19.Trindade, T. and O'Brien, P., Adv. Mater. 8, 161 (1996).CrossRefGoogle Scholar
20.Trindade, T. and O'Brien, P., Chem. Mater. 9, 523 (1997).CrossRefGoogle Scholar
21.Revaprasadu, N., Malik, M.A., O'Brien, P., and Wakefield, G., J. Mater. Chem. 8, 1885 (1998).Google Scholar
22. (a)Hursthouse, M.B., Malik, M.A., Motevalli, M., and O'Brien, P., Organometallics 10, 730 (1991).Google Scholar
(b)Malik, M.A., O'Brien, P., and Motevalli, M., Acta Cryst. C52, 1931 (1996).Google Scholar
23.Peng, X.G., Wickham, J., and Alivisatos, A.P., J. Am. Chem. Soc. 120, 5343 (1998).CrossRefGoogle Scholar
24.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993)Google Scholar
25.Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar