Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:08:32.888Z Has data issue: false hasContentIssue false

Demonstration of Er3+ diffusivity and solubility increases in off-congruent, Li-deficient LiNbO3 crystal

Published online by Cambridge University Press:  27 June 2011

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072,China
Bei Chen
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072,China
Ping-Rang Hua
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072,China
Dao-Yin Yu
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information Technology, Tianjin University, Ministry of Education, Tianjin 300072,China
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon,Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate Er3+ diffusivity and solubility increases in off-congruent, Li-deficient LiNbO3 crystal. Li-poor vapor transport equilibration was used to reduce Li2O content in initial congruent crystals. Local Er3+ in-diffusion was then performed in a wet O2 atmosphere. Before and after the Er3+ diffusion procedure, surface Li2O content was evaluated from measured birefringence. The results show that the Er3+ diffusion procedure resulted in 0.3–0.5 mol% Li2O content loss at crystal surface. Secondary ion mass spectrometry was used to measure the Er3+ depth profiles, from which the diffusivity and solubility are determined. It is shown that the Er3+ diffusivity is nearly doubled and the solubility increases at least 0.6 mol% as the Li2O content decreases by 1.0 mol%. From the known Li2O content reduction, the solubility increase is also predicted and the results show that the predicted data are considerably smaller than the experimental results, suggesting that the Er3+ ions occupy also the Nb5+ site, besides the Li+ site.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., and Suche, H.: Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991).Google Scholar
2.Becker, C., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., and Sciancalepore, D.: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000).CrossRefGoogle Scholar
3.Amin, J., Aust, J.A., and Sanford, N.A.: Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996).CrossRefGoogle Scholar
4.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., and Pihl, T.: Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition. Electron. Lett. 27, 913 (1991).CrossRefGoogle Scholar
5.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996).CrossRefGoogle Scholar
6.Huang, C.H. and McCaughan, L.: Photorefractive-damage-resistant Er-indiffused MgO: LiNbO3 ZnO-waveguide amplifiers and lasers. Electron. Lett. 33, 1639 (1997).CrossRefGoogle Scholar
7.Cantelar, E., Torchia, G.A., Sanz-García, J.A., Pernas, P.L., Lifante, G., and Cussó, F.: Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3: Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003).Google Scholar
8.Das, B.K., Ricken, R., and Sohler, W.: Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 83, 1515 (2003).CrossRefGoogle Scholar
9.Das, B.K., Ricken, R., Quiring, V., Suche, H., and Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti: (Fe:) Er: LiNbO3 waveguide. Opt. Lett. 29, 165 (2004).CrossRefGoogle ScholarPubMed
10.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., and Sohler, W.: Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides. Proc. SPIE. 4277, 144 (2001).CrossRefGoogle Scholar
11.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, C., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K.-H., Gog, T., Materlik, G., Witte, O., Stolz, H., and von der Osten, W.: Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A 64, 33 (1997).Google Scholar
12.Caccavale, F., Segato, F., Mansour, I., Almeida, J.M., and Leite, A.P.: Secondary ion mass spectrometry study of erbium diffusion in lithium niobate crystals. J. Mater. Res. 13, 1672 (1998).CrossRefGoogle Scholar
13.Zhang, D.L., Chen, B., and Pun, E.Y.B.: Locally Er-doped high-solubility LiNbO3 crystal prepared by Li-poor vapor transport equilibration and Er codiffusion. J. Am. Ceram. Soc. 93, 3837 (2010).CrossRefGoogle Scholar
14.Wöhlecke, M., Corradi, G., and Betzler, K.: Optical methods to characterise the composition and homogeneity of lithium niobate single crystals. Appl. Phys. B 63, 323 (1996).Google Scholar
15.Schlarb, U. and Betzler, K.: Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit. Phys. Rev. B 48, 15613 (1993).Google Scholar
16.Zhang, D.L., Yang, Q.Z., Hua, P.R., Liu, H.L., Cui, Y.M., Sun, L., Xu, Y.H., and Pun, E.Y.B.: Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals. J. Opt. Soc. Am. B: Opt. Phys. 26, 620 (2009).CrossRefGoogle Scholar
17.Jundt, D.H., Fejer, M.M., Norwood, R.G., and Bordui, P.F.: Composition dependence of lithium diffusivity in lithium niobate at high temperature. J. Appl. Phys. 72, 3468 (1992).Google Scholar
18.Bordui, P.F., Norwood, R.G., Jundt, D.H., and Fejer, M.M.: Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 71, 875 (1992).CrossRefGoogle Scholar
19.Crank, J.: The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, England, 1985), p. 104.Google Scholar
20.Zhang, D.L., Zhuang, Y.R., Hua, P.R. and Pun, E.Y.B.: Simulation of Ti-diffusion into LiNbO3 in Li-rich atmosphere. J. Appl. Phys. 101, 013101, 2007.Google Scholar
21.Baumann, I., Bosso, S., Brinkmann, R., Corsini, R., Dinand, M., Greiner, A., Schäfer, K., Söchtig, J., Sohler, W., Suche, H., and Wessel, R.: Er-Doped integrated optical devices in LiNbO3. IEEE J. Sel. Top. Quantum Electron. 2, 355 (1996).CrossRefGoogle Scholar
22.Kovacs, L., Rebouta, L., Soares, J.C., and da Silva, M.F.: Lattice site of Er in LiNbO3:Mg, Er crystals. Radiat. Eff. Defects Solids 119121, 445 (1991).Google Scholar
23.Kovacs, L., Rebouta, L., Soares, J.C., da Silva, M.F., Hage-Ali, M., Stoquert, J.P., Siffert, P., Sanz-Garcia, J.A., Corradi, G., Szaller, Zs., and Polgar, K.: On the lattice site of trivalent dopants and the structure of Mg2+-OH--M3+ defects in LiNbO3:Mg crystals. J. Phys. Condens. Matter 5, 781 (1993).CrossRefGoogle Scholar
24.Gill, D.M., McCaughan, L., and Wright, J.C.: Spectroscopic site determinations in erbium-doped lithium niobate. Phys. Rev. B 53, 2334 (1996).Google Scholar
25.Dierolf, V. and Koerdt, M.: Combined excitation-emission spectroscopy of Er3+ ions in stoichiometric LiNbO3: The site selectivity of direct and up conversion excitation processes. Phys. Rev. B 61, 8043 (2000).Google Scholar