Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T03:51:29.722Z Has data issue: false hasContentIssue false

Deformation-induced structural transformation leading to compressive plasticity in Zr65Al7.5Ni10Cu12.5M5 (M = Nb, Pd) glassy alloys

Published online by Cambridge University Press:  31 January 2011

Junji Saida
Affiliation:
Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan
Hidemi Kato
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Mitsuhide Matsushita
Affiliation:
Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan
Akihisa Inoue
Affiliation:
World Premier International (WPI)–Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

Zr65Al7.5Ni10Cu12.5Nb5 glass was found to exhibit a large plastic compressive strain of over 10% and the property was suggested to be due to deformation-induced nanocrystallization. A transmission electron microscopic observation, however, only revealed obscure ordered clusters with a size of ˜2 nm in the fracture surface of a deformed sample, instead of well-identified crystals as previously reported for the Zr–Al–Ni–Cu–Pd system. This phenomenon is suggested to correlate with the higher viscosity of supercooled liquid and the slower grain growth of icosahedral phase during primary crystallization in the Zr65Al7.5Ni10Cu12.5Nb5 compared to those in the Zr65Al7.5Ni10Cu12.5Pd5 alloy. The role of the deformation-induced nanoclusters on the enhanced compressive plasticity was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashby, M.F., Greer, A.L.Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006)CrossRefGoogle Scholar
2.Inoue, A., Nishiyama, N.New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651 (2007)Google Scholar
3.Saida, J., Setyawan, A.D.H., Kato, H., Inoue, A.Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005)Google Scholar
4.Jiang, W.H., Atzmon, M.Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission electron microscopy study. Scr. Mater. 54, 333 (2006)CrossRefGoogle Scholar
5.Lee, S-W., Huh, M-Y., Fleury, E., Lee, J.C.Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006)CrossRefGoogle Scholar
6.Chen, M.W., Inoue, A., Zhang, W., Sakurai, T.Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 2455021 (2006)CrossRefGoogle ScholarPubMed
7.Hajloui, K., Yavari, A.R., Doisneou, B., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, J., Greer, A.L., Inoue, A., Zhang, W., Kvick, Å.Shear delocalization and crack blunting of a metallic glass containing particles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006)Google Scholar
8.Chang, H.J., Kim, D.H., Kim, Y.M., Kim, Y.J., Chattopadhyay, K.On the origin of nanocrystals in the shear band in a quasicrystal forming bulk metallic glass Ti40Zr29Cu9Ni8Be14. Scr. Mater. 55, 509 (2006)CrossRefGoogle Scholar
9.Kumar, G., Ohkubo, T., Mukai, T., Hono, K.Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr. Mater. 57, 173 (2007)Google Scholar
10.Saida, J., Setyawan, A.D., Kato, H., Matsushita, M., Inoue, A.Improvement of plasticity in Pd-containing Zr–Al–Ni–Cu bulk metallic glass by deformation-induced nano structure change. Mater. Trans. 49, 2732 (2008)Google Scholar
11.Saida, J., Setyawan, A.D., Kato, H., Matsushita, M., Inoue, A.Tailoring thermally induced nano-quasicrystallization and deformation-assisted nanocrystallization for mechanical property improvement in Zr–Al–Ni–Cu–Pd bulk metallic glasses. Mater. Trans. 50, 2079 (2009)Google Scholar
12.Louzguine, D.V., Zeng, Y.Q., Setyawan, A.D.H., Nishiyama, N., Kato, H., Saida, J., Inoue, A.Deformation behavior of Zr- and Ni-based bulk glassy alloys. J. Mater. Res. 22, 1087 (2007)Google Scholar
13.Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., Sakurai, T.Formation of icosahedral quasicrystalline phase in Zr–Al–Ni–Cu–M (M = Ag, Pd, Au or Pt) systems. Mater. Trans., JIM 40, 1181 (1999)CrossRefGoogle Scholar
14.Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., Matsushita, M.Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility. J. Mater. Res. 15, 2195 (2000)Google Scholar
15.Saida, J., Inoue, A.Icosahedral quasicrystalline phase formation in Zr–Al–Ni–Cu glassy alloys by addition of V, Nb and Ta. J. Non-Cryst. Solids 312–314, 502 (2002)CrossRefGoogle Scholar
16.Xing, L.Q., Eckert, J., Löser, W., Schultz, L.High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999)CrossRefGoogle Scholar
17.Kuhn, U., Eckert, J., Mattern, N., Schultz, L.As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Appl. Phys. Lett. 77, 3176 (2000)CrossRefGoogle Scholar
18.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C.Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. Lett. 64, 180201 (2001)Google Scholar
19.He, G., Zhang, Z.F., Löser, W., Eckert, J., Schultz, L.Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater. 51, 2383 (2003)CrossRefGoogle Scholar
20.Fan, C., Qiao, D., Wilson, T.W., Choo, H., Liaw, P.K.As-cast Zr–Ni–Cu–Al–Nb bulk metallic glasses containing nanocrystalline particles with ductility. Mater. Sci. Eng., A 431, 158 (2006)CrossRefGoogle Scholar
21.Eckert, J., Das, J., Löser, W., Roy, S.K., Gebert, A.Strengthening of multicomponent glass-forming alloys by microstructure design. J. Non-Cryst. Solids 353, 3742 (2007)CrossRefGoogle Scholar
22.Liu, L., Qiu, C.L., Sun, M., Chen, Q., Chan, K.C., Pang, G.K.H.Improvements in the plasticity and biocompatibility of Zr–Cu–Ni–Al bulk metallic glass by the microalloying of Nb. Mater. Sci. Eng., A 449–451, 193 (2007)CrossRefGoogle Scholar
23.Pang, S., Zhang, T., Kimura, H., Asami, K., Inoue, A.Corrosion behavior of Zr–(Nb–)Al–Ni–Cu glassy alloys. Mater. Trans., JIM 41, 1490 (2000)Google Scholar
24.Raju, V.R., Kühn, U., Wolff, U., Schneider, F., Eckert, J., Reiche, R., Gebert, A.Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 57, 173 (2002)Google Scholar
25.Setyawan, A.D., Kato, H., Saida, J., Inoue, A.Glass formation dependence on casting-atmosphere pressure in Zr65Al7.5Ni10 Cu17.5–xPdx (x = 0–17.5 at.%) alloy system: A resultant effect of quasicrystalline phase transformation and cooling mechanism during mold-casting process. J. Appl. Phys. 103, 044907 (2008)CrossRefGoogle Scholar
26.Wu, W.F., Li, Y., Schuh, C.A.Strength, plasticity and brittleness of bulk metallic glasses under compression: Statistical and geometric effects. Philos. Mag. 88, 71 (2008)Google Scholar
27.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., Matsumoto, M.Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10 Cu17.5 alloy. Mater. Trans., JIM 34, 1234 (1993)Google Scholar
28.Altounian, Z., Batalla, E., Strom-Olsen, J.O., Walter, W.L.The influence of oxygen and other impurities on the crystallization of NiZr2 and related metallic glasses. J. Appl. Phys. 61, 149 (1987)Google Scholar
29.Saida, J., Matsushita, M., Inoue, A.Nano icosahedral quasicrystals in Zr-based glassy alloys. Intermetallics 10, 1089 (2002)Google Scholar
30.Saida, J., El-Eskandarany, M.S., Inoue, A.Change in primary phase from icosahedral quasicrystal to fcc-Zr2Ni by mechanical disordering in Zr–Al–Ni–Cu–Pd glassy alloy. Scr. Mater. 48, 1397 (2003)Google Scholar
31.Johnson, W.A., Mehl, R.F.Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Engrs. 135, 416 (1939)Google Scholar
32.Saida, J., Matsushita, M., Inoue, A.Nucleation and grain growth kinetics of nano-icosahedral quasicrystalline phase in Zr65Al7.5Ni10Cu17.5–xPdx (x = 5, 10 and 17.5) glassy alloys. Mater. Trans., JIM 41, 1505 (2000)CrossRefGoogle Scholar
33.Kato, H., Wada, T., Hasegawa, M., Saida, J., Inoue, A., Chen, H.S.Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability. Scr. Mater. 54, 2023 (2006)CrossRefGoogle Scholar
34.Kelton, K.F.Crystallization of liquids and glasses to quasicrystals. J. Non-Cryst. Solids 334–335, 253 (2004)CrossRefGoogle Scholar
35.Murty, B.S., Ping, D.H., Hono, K.Nanoquasicrystallization of binary Zr–Pd metallic glasses. Appl. Phys. Lett. 77, 1102 (2000)Google Scholar
36.Saida, J., Matsushita, M., Li, C., Inoue, A.Formation of the icosahedral quasicrystalline phase in Zr70Pd30 binary glassy alloy. Philos. Mag. Lett. 81, 39 (2001)CrossRefGoogle Scholar
37.Saida, J., Matsushita, M., Inoue, A.Nanoscale icosahedral quasicrystalline phase formation in a rapidly solidified Zr80Pt20 binary alloy. Appl. Phys. Lett. 77, 73 (2000)CrossRefGoogle Scholar
38.Spaepan, F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977)CrossRefGoogle Scholar
39.Argon, A.S.Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979)Google Scholar
40.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
41.Liu, X.J., Chen, G.L., Hui, X., Liu, T., Lu, Z.P.Ordered clusters and free volume in a Zr–Ni metallic glass. Appl. Phys. Lett. 93, 011911 (2008)Google Scholar