Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T22:48:14.708Z Has data issue: false hasContentIssue false

Deformation behavior and indentation size effect in amorphous and crystallized Pd40Cu30Ni10P20 alloy

Published online by Cambridge University Press:  31 January 2011

L. Liu*
Affiliation:
State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, 430074 Wuhan, People's Republic of China
K.C. Chan
Affiliation:
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The deformation behavior and indentation size effect (ISE) in amorphous and crystallized Pd40Cu30Ni10P20 alloy were comparatively studied through instrumented nanoindentation. It was found that the two alloys showed different deformation behaviors, the amorphous alloy exhibited conspicuous pop-in events in the load-depth (P-h) curve, while the crystallized alloy showed a relatively smooth P-h curve. In addition, the indentation hardness was observed to decrease with increasing penetration depth in the two alloys, exhibiting a significant ISE. However, the crystallized alloy displayed a sharper reduction of hardness with indentation depth as compared to the amorphous alloy, indicating a more significant indentation size effect in the crystalline alloy. The structure difference and friction factor associated with the surface residual stress are taken into account to interpret the difference in the deformation behavior and indentation size effect of the two alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Joshi, S.S. and Melkote, S.N.: An explanation for the size effect in machining using strain gradient plasticity., J. Manuf. Sci. Eng. 126, 679 (2004).CrossRefGoogle Scholar
2.Manika, I. and Maniks, J.: Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049 (2006).CrossRefGoogle Scholar
3.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
4.Gao, H., Huang, Y., and Nix, W.D.: Modeling plasticity at the micrometer scale. Naturwissenschaften 86, 507 (1999).CrossRefGoogle ScholarPubMed
5.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity–I. Theory. J. Mech. Phys. Solids 47, 1239 (1999).CrossRefGoogle Scholar
6.Swadener, J.G., George, E.P., and Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).Google Scholar
7.Kim, J.Y., Lee, B.W., Read, D.T., and Kwon, D.: Influence of tip bluntness on the size-dependent nanoindentation hardness. Scr. Mater. 52, 353 (2005).Google Scholar
8.Feng, G. and Nix, W.D.: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).Google Scholar
9.Swadener, J.G., Misra, A., Hoagland, R.G., and Nastasi, M.: A mechanistic description of combined hardening and size effects. Scr. Mater. 47, 343 (2002).CrossRefGoogle Scholar
10.Huang, Y., Zhang, F., Hwang, K.C., Nix, W.D., Pharr, G.M., and Feng, G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006).CrossRefGoogle Scholar
11.Li, H., Ghosh, A., Han, Y.H., and Bradt, R.C.: The frictional component of the indentation size effect in low load microhardness testing. J. Mater. Res. 8, 1028 (1993).CrossRefGoogle Scholar
12.Atkinson, M.: Further analysis of the size effect in indentation hardness tests of some metals. J. Mater. Res. 10, 2908 (1995).CrossRefGoogle Scholar
13.Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F., and Baskes, M.I.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433 (2002).Google Scholar
14.Skinner, J. and Gane, N.: Sliding friction under a negative load. J. Phys. D: Appl. Phys. 5, 2087 (1972).CrossRefGoogle Scholar
15.Bull, S.J., Page, T.F., Yoffe, E.H., Bull, S.J., Page, T.F., and Yoffe, E.H.: An explanation for the indentation size effect in ceramics. Philos. Mag. Lett. 59, 281 (1989).Google Scholar
16.Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001).CrossRefGoogle Scholar
17.Lam, D.C.C. and Chong, A.C.M.: Model and experiments on strain gradient hardening in metallic glass. Mater. Sci. Eng., A 318, 313 (2001).CrossRefGoogle Scholar
18.Yang, F.Q., Geng, K.B., Law, P.K., Fan, G.J., and Choo, H.: Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321 (2007).Google Scholar
19.Concustell, A., Sort, J., Alcalá, G., Mato, S., Gebert, A., Eckert, J., and Baró, M.D.: Plastic deformation and mechanical softening of Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. J. Mater. Res. 20, 2719 (2005).CrossRefGoogle Scholar
20.Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).CrossRefGoogle Scholar
21.Van Steenberge, N., Sort, J., Concustell, A., Das, J., Scudino, S., Suriñach, S., Eckert, J., and Baró, M.D.: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).CrossRefGoogle Scholar
22.Li, N., Chan, K.C., and Liu, L.: The indentation size effect in Pd40Cu30Ni10P20 bulk metallic glass. J. Phys. D: Appl. Phys. 41, 155415 (2008).Google Scholar
23.Bradby, J.E., Kucheyev, S.O., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P., Li, G., and Phillips, M.R.: Indentationinduced damage in GaN epilayers. Appl. Phys. Lett. 80, 383 (2002).Google Scholar
24.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 7, 1564 (1992).Google Scholar
25.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C., and Swain, M.V.: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956 (2002).CrossRefGoogle Scholar
26.Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).Google Scholar
27.Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).Google Scholar
28.Burgess, T., Laws, K.J., and Ferry, M.: Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation. Acta Mater. 56, 4829 (2008).Google Scholar
29.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
30.Wei, Y.G., Wang, X.Z., and Zhao, M.H.: Size effect measurement and characterization in nanoindentation test., J. Mater. Res. 19, 208 (2004).CrossRefGoogle Scholar
31.Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
32.Shi, H. and Atkinson, M.: A friction effect in low-load hardness testing of cooper and aluminium. J. Mater. Sci. 25, 2111 (1990).CrossRefGoogle Scholar
33.Li, H. and Bradt, R.C.: The microhardness indentation load/size effect in rutile and cassiterite single crystals., J. Mater. Sci. 28, 917 (1993).Google Scholar
34.Gong, J.H., Wu, J.J., and Guan, Z.D.: Examination of the indentation size effect in low-load vickers hardness testing of ceramics. J. Eur. Ceram. Soc. 19, 2625 (1999).CrossRefGoogle Scholar
35.Şahin, O., Uzun, O., Kölemen, U., and Uçar, U.: analysis of ISE in dynamic hardness measurements of β-Sn single crystals using a depth-sensing indentation technique. Mater. Charact. 59, 729 (2008).CrossRefGoogle Scholar
36.Peng, Z.J., Gong, J.H., and Miao, H.Z.: On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data., J. Eur. Ceram. Soc. 24, 2193 (2004).Google Scholar