Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T23:17:15.987Z Has data issue: false hasContentIssue false

Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading

Published online by Cambridge University Press:  01 June 2006

H. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
L.Z. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Z.F. Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
K.Q. Qiu
Affiliation:
School of Materials Science and Engineering, Shenyang University of Technology, 110023 Shenyang, People's Republic of China
X.F. Pan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of Chinaand School of Materials Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
H.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Z.G. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Deformation and fracture behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass and its composite containing transverse tungsten fibers in compression were investigated. The monolithic metallic glass and the tungsten fiber composite specimens with aspect ratios of 2 and 1 are shown to have essentially the same ultimate strength under compression. The damage processes in the bulk metallic glass composite consisted of fiber cracking, followed by initiation of shear band in the glassy matrix mainly from the impingement of the fiber crack on the fiber/matrix interface. The site of the shear band initiation in the matrix is consistent with the prediction of finite element modeling. Evidence is present that the tungsten fiber can resist the propagation of the shear band in the glassy matrix. However, the compressive strain to failure substantially decreased in the present composite compared with the composites containing longitudinal tungsten fibers. Finally, the two composite specimens fractured in a shear mode and almost all the tungsten fibers contained cracks.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
2.Johnson, W.L.: Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
3.Löffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 (2003).CrossRefGoogle Scholar
4.Zhang, Z.F., He, G., Eckert, J., Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).CrossRefGoogle ScholarPubMed
5.Lowhaphandu, P., Lewandowski, J.J.: Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Mater. 38, 1811 (1998).CrossRefGoogle Scholar
6.Flores, K.M., Dauskardt, R.H.: Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999).CrossRefGoogle Scholar
7.Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L., Lewandowski, J.J.: Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics 8, 487 (2000).CrossRefGoogle Scholar
8.Hess, P.A., Dauskardt, R.H.: Mechanisms of elevated temperature fatigue crack growth in Zr–Ti–Cu–Ni–Be bulk metallic glass. Acta Mater. 52, 3525 (2004).CrossRefGoogle Scholar
9.Gilbert, C.J., Schroeder, V., Ritchie, R.O.: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).CrossRefGoogle Scholar
10.Zhang, H., Wang, Z.G., Qiu, K.Q., Zang, Q.S., Zhang, H.F.: Cyclic deformation and fatigue-crack propagation of a Zr-based bulk amorphous metal. Mater. Sci. Eng. A356, 173 (2003).CrossRefGoogle Scholar
11.Nieh, T.G., Schuh, C., Wadsworth, J., Li, Y.: Strain rate-dependent deformation in bulk metallic glasses. Intermetallics 10, 1177 (2002).CrossRefGoogle Scholar
12.Eckert, J., Reger-Leonhard, A., Weiss, B., Heilmaier, M.: Nanostructured materials in multicomponent alloy systems. Mater. Sci. Eng. 301, 1 (2001).CrossRefGoogle Scholar
13.Ravichandran, G., Molinari, A.: Analysis of shear banding in metallic glasses under bending. Acta Mater. 53, 4087 (2005).CrossRefGoogle Scholar
14.Schuh, C.A., Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
15.Zhang, Z.F., He, G., Eckert, J.: Shear and distensile fracture behaviour of Ti-based composites with ductile dendrites. Philos. Mag. 85, 897 (2005).CrossRefGoogle Scholar
16.Conner, R.D., Li, Y., Nix, W.D., Johnson, W.L.: Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 (2004).CrossRefGoogle Scholar
17.Bruck, H.A., Christman, T., Rosakis, A.J., Johnson, W.L.: Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).CrossRefGoogle Scholar
18.Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., Eckert, J.: Effect of aspect ratio on the compressive deformation and fracture behavior of Zr-based metallic glass. Philos. Mag. Lett. 85,513 (2005).CrossRefGoogle Scholar
19.Vaidyanathan, R., Dao, M., Ravichandran, G., Surash, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).CrossRefGoogle Scholar
20.Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T., Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A375, 1182 (2004).CrossRefGoogle Scholar
21.Conner, R.D., Choi-Yim, H., Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 (1999).CrossRefGoogle Scholar
22.Choi-Yim, H., Schroers, J., Johnson, W.L.: Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 80, 1906 (2002).CrossRefGoogle Scholar
23.Conner, R.D., Dandliker, R.B., Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
24.Qiu, K.Q., Wang, A.M., Zhang, H.F., Ding, B.Z., Hu, Z.Q.: Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 10, 1283 (2002).CrossRefGoogle Scholar
25.Dandliker, R.B., Conner, R.D., Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 2896 (1998).CrossRefGoogle Scholar
26.Dragoi, D., Ustundag, E., Clausen, B., Bourke, M.A.M.: Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites. Scripta Mater. 45, 245 (2001).CrossRefGoogle Scholar
27.Zhang, Z.F., Eckert, J., Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).CrossRefGoogle Scholar
28.Choi-Yim, H., Buschi, R., Köster, U., Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
29.Lee, J.C., Kim, Y.C., Ahn, J.P., Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).CrossRefGoogle Scholar
30.Moser, B., Kuebler, J., Meinhard, H., Muster, W., Michler, J.: Observation of instabilities during plastic deformation by in-situ SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).CrossRefGoogle Scholar
31.Wright, W.J., Saha, R., Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001).CrossRefGoogle Scholar
32.Zhang, H., Zhang, Z.F., Wang, Z.G., Qiu, K.Q., Zhang, H.F., Zang, Q.S.: Effects of tungsten fibers on fracture modes of Zr-based bulk metallic glassy composites. Metall. Mater. Trans. A (2005, in press).Google Scholar