Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T10:26:01.867Z Has data issue: false hasContentIssue false

Deformable liquid metal polymer composites with tunable electronic and mechanical properties

Published online by Cambridge University Press:  10 July 2018

Amanda Koh
Affiliation:
Autonomous Systems Division, Vehicle Technology Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
Jennifer Sietins
Affiliation:
Manufacturing Science and Technology Branch, Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
Geoffrey Slipher*
Affiliation:
Autonomous Systems Division, Vehicle Technology Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
Randy Mrozek*
Affiliation:
Polymers Branch, Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Room-temperature liquid metals, such as eutectic gallium–indium–tin (galinstan), dispersed in a polymer matrix present unique potential as conductors that may have minimal influence on the host polymer mechanical performance while providing enhanced electrical performance. Work described herein systematically evaluates the influence of uncured polydimethylsiloxane (PDMS) viscosity and galinstan loading on final dispersion viscosity and cured modulus. Dispersions of up to 80 vol% galinstan were obtained with relative permittivity values up to 170 that otherwise exhibited similar uncured rheological changes to a solid filler. Cured galinstan-in-PDMS dispersions, however, exhibited a reduced stiffness increase with respect to the host polymer relative to a solid filler. At a critical PDMS viscosity and metal, loading phase inversion to a conductive PDMS-in-metal dispersion was observed. It is anticipated that this work will enable the development of liquid metal polymer composites with independently controlled mechanical and electrical properties for a wide variety of stretchable electronic applications.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zare, Y. and Shabani, I.: Polymer/metal nanocomposites for biomedical applications. Mater. Sci. Eng., C 60, 195 (2016).CrossRefGoogle ScholarPubMed
Kim, S-R., Kim, J-H., and Park, J-W.: Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces 9, 26407 (2017).CrossRefGoogle ScholarPubMed
Lazarus, N., Meyer, C.D., Bedair, S.S., Slipher, G.A., and Kierzewski, I.M.: Magnetic elastomers for stretchable inductors. ACS Appl. Mater. Interfaces 7, 10080 (2015).CrossRefGoogle ScholarPubMed
Park, M., Park, J., and Jeong, U.: Design of conductive composite elastomers for stretchable electronics. Nano Today 9, 244 (2014).CrossRefGoogle Scholar
Mrozek, R.A., Cole, P.J., Mondy, L.A., Rao, R.R., Bieg, L.F., and Lenhart, J.L.: Highly conductive, melt processable polymer composites based on nickel and low melting eutectic metal. Polymer 51, 2954 (2010).CrossRefGoogle Scholar
Stoyanov, H., Kollosche, M., Risse, S., Waché, R., and Kofod, G.: Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25, 578 (2013).CrossRefGoogle ScholarPubMed
Al-Saleh, M.H. and Sundararaj, U.: Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738 (2009).CrossRefGoogle Scholar
Voet, A.: Dielectrics and rheology of non-aqueous dispersions. J. Phys. Colloid Chem. 51, 1037 (1947).CrossRefGoogle ScholarPubMed
Pal, R.: Effect of droplet size on the rheology of emulsions. AIChE J. 42, 3181 (1996).CrossRefGoogle Scholar
Seth, J.R., Mohan, L., Locatelli-Champagne, C., Cloitre, M., and Bonnecaze, R.T.: A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838 (2011).CrossRefGoogle ScholarPubMed
Pishvaei, M., Graillat, C., McKenna, T.F., and Cassagnau, P.: Rheological behaviour of polystyrene latex near the maximum packing fraction of particles. Polymer 46, 1235 (2005).CrossRefGoogle Scholar
Olhero, S.M. and Ferreira, J.M.F.: Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol. 139, 69 (2004).CrossRefGoogle Scholar
Itabashi, Y., Inoue, M., and Tada, Y.: Effect of filler morphology on fatigue properties of stretchable wires printed with Ag pastes. In International Conference on Electronics Packaging (ICEP) (IEEE, Piscataway, NJ, 2014); p. 752.CrossRefGoogle Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).CrossRefGoogle ScholarPubMed
Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., and Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4, 157 (2016).CrossRefGoogle Scholar
Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., and Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494 (2009).CrossRefGoogle ScholarPubMed
Bartlett, M.D., Fassler, A., Kazem, N., Markvicka, E.J., Mandal, P., and Majidi, C.: Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726 (2016).CrossRefGoogle ScholarPubMed
Dickey, M.D.: Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).CrossRefGoogle ScholarPubMed
Kazem, N., Hellebrekers, T., and Majidi, C.: Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017).CrossRefGoogle ScholarPubMed
Tabatabai, A., Fassler, A., Usiak, C., and Majidi, C.: Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194 (2013).CrossRefGoogle ScholarPubMed
Khan, M.R., Trlica, C., So, J-H., Valeri, M., and Dickey, M.D.: Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl. Mater. Interfaces 6, 22467 (2014).CrossRefGoogle ScholarPubMed
Khoshmanesh, K., Tang, S-Y., Zhu, J.Y., Schaefer, S., Mitchell, A., Kalantar-zadeh, K., and Dickey, M.D.: Liquid metal enabled microfluidics. Lab Chip 17, 974 (2017).CrossRefGoogle ScholarPubMed
Ladd, C., So, J-H., Muth, J., and Dickey, M.D.: 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081 (2013).CrossRefGoogle ScholarPubMed
Parekh, D.P., Ladd, C., Panich, L., Moussa, K., and Dickey, M.D.: 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16, 1812 (2016).CrossRefGoogle ScholarPubMed
de Gans, B-J., Duineveld, P.C., and Schubert, U.S.: Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203 (2004).CrossRefGoogle Scholar
Teng, W.D., Edirisinghe, M.J., and Evans, J.R.G.: Optimization of dispersion and viscosity of a ceramic jet printing ink. J. Am. Ceram. Soc. 80, 486 (1997).CrossRefGoogle Scholar
Koh, A., Mrozek, R., and Slipher, G.: Characterization and manipulation of interfacial activity for aqueous galinstan dispersions. Adv. Mater. Interfaces 5, 1701240 (2018). https://doi.org/10.1002/admi.201701240.CrossRefGoogle Scholar
Xu, Q., Oudalov, N., Guo, Q., Jaeger, H.M., and Brown, E.: Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium–indium. Phys. Fluids 24, 063101 (2012).CrossRefGoogle Scholar
Gutiérrez, J.M., González, C., Maestro, A., Solè, I., Pey, C.M., and Nolla, J.: Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid Interface Sci. 13, 245 (2008).CrossRefGoogle Scholar
Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., and Chourasia, M.K.: Nanoemulsion: Concepts, development and applications in drug delivery. J. Controlled Release 252, 28 (2017).CrossRefGoogle ScholarPubMed
Mrozek, R.A., Knorr, D.B., Spangler, S.W., Cole, P.J., and Lenhart, J.L.: Impact of precursor size on the chain structure and mechanical properties of solvent-swollen epoxy gels. Soft Matter 8, 11185 (2012).CrossRefGoogle Scholar
Song, C., Wang, P., and Makse, H.A.: A phase diagram for jammed matter. Nature 453, 629 (2008).CrossRefGoogle ScholarPubMed
Masalova, I., Foudazi, R., and Malkin, A.Y.: The rheology of highly concentrated emulsions stabilized with different surfactants. Colloids Surf., A 375, 76 (2011).CrossRefGoogle Scholar
Pal, R.: Yield stress and viscoelastic properties of high internal phase ratio emulsions. Colloid Polym. Sci. 277, 583 (1999).CrossRefGoogle Scholar
Thelen, J., Dickey, M.D., and Ward, T.: A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12, 3961 (2012).CrossRefGoogle ScholarPubMed
Hutter, T., Bauer, W-A.C., Elliott, S.R., and Huck, W.T.S.: Formation of spherical and non-spherical eutectic gallium–indium liquid–metal microdroplets in microfluidic channels at room temperature. Adv. Funct. Mater. 22, 2624 (2012).CrossRefGoogle Scholar
Hohman, J.N., Kim, M., Wadsworth, G.A., Bednar, H.R., Jiang, J., LeThai, M.A., and Weiss, P.S.: Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett. 11, 5104 (2011).CrossRefGoogle ScholarPubMed
Lin, Y., Liu, Y., Genzer, J., and Dickey, M.D.: Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 8, 3832 (2017).CrossRefGoogle ScholarPubMed
Jeong, S.H., Chen, S., Huo, J., Gamstedt, E.K., Liu, J., Zhang, S-L., Zhang, Z-B., Hjort, K., and Wu, Z.: Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Nature 5, 18257 (2015).Google ScholarPubMed
Fan, P., Sun, Z., Wang, Y., Chang, H., Zhang, P., Yao, S., Lu, C., Rao, W., and Liu, J.: Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Adv. 8, 16232 (2018).CrossRefGoogle Scholar
Luckham, P.F. and Ukeje, M.A.: Effect of particle size distribution on the rheology of dispersed systems. J. Colloid and Interface Sci. 220, 347 (1999).CrossRefGoogle ScholarPubMed
Sharu, B.K., Simon, G.P., Cheng, W., Zank, J., and Bhattacharyya, A.R.: Development of microstructure and evolution of rheological characteristics of a highly concentrated emulsion during emulsification. Colloids Surf., A 532, 342 (2017).CrossRefGoogle Scholar
Masalova, I. and Malkin, A.Y.: Peculiarities of rheological properties and flow of highly concentrated emulsions: The role of concentration and droplet size. Colloid J. 69, 185 (2007).CrossRefGoogle Scholar
Huang, S.H., Liu, P., Mokasdar, A., and Hou, L.: Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 67, 1191 (2013).CrossRefGoogle Scholar
Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Composites, Part B 110, 442 (2017).CrossRefGoogle Scholar
Mewis, J. and Spaull, A.J.B.: Rheology of concentrated dispersions. Adv. Colloid Interface Sci. 6, 173 (1976).CrossRefGoogle Scholar
Guth, E.: Theory of filler reinforcement. J. Appl. Phys. 16, 20 (1945).CrossRefGoogle Scholar
Fu, S-Y., Feng, X-Q., Lauke, B., and Mai, Y-W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites, Part B 39, 933 (2008).CrossRefGoogle Scholar
Style, R.W., Boltyanskiy, R., Allen, B., Jensen, K.E., Foote, H.P., Wettlaufer, S.J., and Dufresne, E.R.: Stiffening solids with liquid inclusions. Nat. Phys. 11, 82 (2014).CrossRefGoogle Scholar
Dang, Z-M., Yuan, J-K., Zha, J-W., Zhou, T., Li, S-T., and Hu, G-H.: Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660 (2012).CrossRefGoogle Scholar
Liu, X., Katehi, L.P.B., and Peroulis, D.: Non-toxic liquid metal microstrip resonators 2009. In Asia Pacific Microwave Conference (IEEE, Piscataway, NJ, 2009); p. 131.Google Scholar
John, R.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).Google Scholar
Farrell, T. and Greig, D.: The electrical resistivity of nickel and its alloys. J. Phys. C: Solid State Phys. 1, 1359 (1968).CrossRefGoogle Scholar
Qian, C. and McClements, D.J.: Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization. Factors affecting particle size. Food Hydrocolloids 25, 1000 (2011).CrossRefGoogle Scholar
Abismaïl, B., Canselier, J.P., Wilhelm, A.M., Delmas, H., and Gourdon, C.: Emulsification by ultrasound: Drop size distribution and stability. Ultrason. Sonochem. 6, 75 (1999).CrossRefGoogle ScholarPubMed
Floury, J., Desrumaux, A., and Lardières, J.: Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Sci. Emerging Technol. 1, 127 (2000).CrossRefGoogle Scholar
Fernandez, P., André, V., Rieger, J., and Kühnle, A.: Nano-emulsion formation by emulsion phase inversion. Colloids Surf., A 251, 53 (2004).CrossRefGoogle Scholar
Daalkhaijav, U., Yirmibesoglu, O.D., Walker, S., and Mengüç, Y.: Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol. 3, 1700351 (2018). https://doi.org/10.1002/admt.201700351.CrossRefGoogle Scholar
Steinmann, S., Gronski, W., and Friedrich, C.: Quantitative rheological evaluation of phase inversion in two-phase polymer blends with cocontinuous morphology. Rheol. Acta 41, 77 (2002).CrossRefGoogle Scholar
Steinmann, S., Gronski, W., and Friedrich, C.: Influence of selective filling on rheological properties and phase inversion of two-phase polymer blends. Polymer 43, 4467 (2002).CrossRefGoogle Scholar
Supplementary material: File

Koh et al. supplementary material

Figures S1-S8

Download Koh et al. supplementary material(File)
File 900.1 KB