Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:06:33.490Z Has data issue: false hasContentIssue false

Defects in amorphous phase-change materials

Published online by Cambridge University Press:  09 May 2013

Jennifer Luckas
Affiliation:
I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany; and Laboratoire de Génie Electrique de Paris (CNRS UMR 8507), Supelec, Universités Paris VI et XI, Plateau de Moulon, 91190 Gif sur Yvette, France
Daniel Krebs
Affiliation:
IBM Zürich Research Laboratory, 8803 Rüschlikon, Switzerland
Stephanie Grothe
Affiliation:
I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany
Josef Klomfaß
Affiliation:
IEF-5 Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
Reinhard Carius
Affiliation:
IEF-5 Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
Christophe Longeaud
Affiliation:
Laboratoire de Génie Electrique de Paris (CNRS UMR 8507), Supelec, Universités Paris VI et XI, Plateau de Moulon, 91190 Gif sur Yvette, France
Matthias Wuttig*
Affiliation:
I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany; and JARA Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Understanding the physical origin of threshold switching and resistance drift phenomena is necessary for making a breakthrough in the performance of low-cost nanoscale technologies related to nonvolatile phase-change memories. Even though both phenomena of threshold switching and resistance drift are often attributed to localized states in the band gap, the distribution of defect states in amorphous phase-change materials (PCMs) has not received so far, the level of attention that it merits. This work presents an experimental study of defects in amorphous PCMs using modulated photocurrent experiments and photothermal deflection spectroscopy. This study of electrically switching alloys involving germanium (Ge), antimony (Sb) and tellurium (Te) such as amorphous germanium telluride (a-GeTe), a-Ge15Te85 and a-Ge2Sb2Te5 demonstrates that those compositions showing a high electrical threshold field also show a high defect density. This result supports a mechanism of recombination and field-induced generation driving threshold switching in amorphous chalcogenides. Furthermore, this work provides strong experimental evidence for complex trap kinetics during resistance drift. This work reports annihilation of deep states and an increase in shallow defect density accompanied by band gap widening in aged a-GeTe thin films.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).CrossRefGoogle ScholarPubMed
Lee, B.S., Abelson, J.R., Bishop, S.G., Kang, D-H., Cheong, B-K., and Kim, K-B.: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).CrossRefGoogle Scholar
Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., and Wuttig, M.: Structural transformation of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130 (2000).CrossRefGoogle Scholar
Bruns, G., Merkelbach, P., Schlockermann, C., Salinga, M., Wuttig, M., Happ, T.D., Philipp, J.B., and Kund, M.: Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).CrossRefGoogle Scholar
Lankhorst, M.H.R., Ketelaars, B.W.S., and Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347 (2005).CrossRefGoogle ScholarPubMed
Wuttig, M.: Phase-change materials: Towards a universal memory? Nat. Mater. 4, 265 (2005).CrossRefGoogle ScholarPubMed
Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Shelby, R.M., Salinga, M., Jefferson, C.M., and Wuttig, M.: Characterization of phase change memory materials using phase change bridge devices. Appl. Phys. Lett. 106, 054308 (2009).Google Scholar
Boniardi, M., Redaelli, A., Pirovano, A., Tortorelli, I., and Pellizzer, F.: A physics-based model of electronic conduction decrease with time in amorphous Ge2Sb2Te5. J. Appl. Phys. 105, 084506 (2009).CrossRefGoogle Scholar
Chen, M., Rubin, K.A., and Barton, R.W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502 (1986).CrossRefGoogle Scholar
Luckas, J., Piarristeguy, A., Bruns, G., Jost, P., Grothe, S., Schmidt, R., Longeaud, C., and Wuttig, M., Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys. J. Appl. Phys. 113, 023704 (2013).CrossRefGoogle Scholar
Ielmini, D. and Zhang, Y.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007).CrossRefGoogle Scholar
Redaelli, A., Pirovano, A., Benvenuti, A. and Lacaita, A.L.: Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 103, 111101 (2008).CrossRefGoogle Scholar
Pirovano, A., Lacaita, A.L., Pellizzer, F., Kostylev, S.A., Benvenuti, A., and Bez, R.: Low-field amorphous state resistivity and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714 (2004).CrossRefGoogle Scholar
Ielmini, D., Lavizzari, S., Sharma, D., and Lacaita, A.L.: Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 92, 193511 (2008).CrossRefGoogle Scholar
Krebs, D., Schmidt, R.M., Klomfaß, J., Luckas, J., Bruns, G., Schlockermann, C., Salinga, M., Carius, R., and Wuttig, M.: Impact of DoS changes on resistance drift and threshold switching in amorphous phase-change materials. J. Non-Cryst. Solids 358, 2412 (2012).CrossRefGoogle Scholar
Jackson, W.B., Amer, N.M., Boccara, A.C., and Fournier, D.: Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333 (1981).CrossRefGoogle ScholarPubMed
Oheda, H.: Phase-shift analysis of modulated photocurrent - Its application to the determination of the energetic distribution of gap states. J. Appl. Phys. 52, 6693 (1981).CrossRefGoogle Scholar
Brüggemann, R., Main, C., Berkin, J., and Reynolds, S.: An evaluation of phase-shift analysis of modulated photocurrents. Philos. Mag. B 62, 29 (1990).CrossRefGoogle Scholar
Longeaud, C. and Kleider, J. P.: General-analysis of the modulated-photocurrent experiment including the contributions of holes and electrons. Phys. Rev. B 45, 11672 (1992).CrossRefGoogle ScholarPubMed
Luckas, J., Krebs, D., Salinga, M., Wuttig, M., and Longeaud, C.: Investigation of defect states in the amorphous phase of phase change alloys GeTe and Ge2Sb2Te5. Phys. Status Solidi C 7, 852 (2010).CrossRefGoogle Scholar
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., and Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 15391592 (2010).CrossRefGoogle Scholar
Luckas, J., Kremers, S., Krebs, D., Salinga, M., Wuttig, M., and Longeaud, C.: The influence of a temperature dependent band gap on the energy scale of modulated photocurrent experiments. J. Appl. Phys. 110, 013719 (2011).CrossRefGoogle Scholar
Raoux, S., Cabrera, D., Devasia, A., Kurinec, S., Cheng, H., Zhu, Y., Breslin, C., Jordan-Sweet, J., Rettner, C.T., Burr, G.W., Salinga, M., and Wuttig, M.: Influence of dopants on the crystallization temperature, crystal structure, resistance, and threshold field for Ge2Sb2Te5 and GeTe phase change materials. E/PCOS (2011).Google Scholar
Krebs, D., Raoux, S., Rettner, C.T., Burr, G.W., Salinga, M., and Wuttig, M.: Threshold field of phase change memory materials measured using phase change bridge device. Appl. Phys. Lett. 95, 082101 (2009).CrossRefGoogle Scholar
Shportko, S., Kremers, S., Woda, M., Lencer, D., Robertson, J., and Wuttig, M.: Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653 (2008).CrossRefGoogle ScholarPubMed
Kremers, S.: Optische Eigenschaften von Phasenwechselmaterialien für zukünftige optische und elektronische Speicheranwendungen. Ph.D. Thesis, RWTH University, Aachen, Germany, 2009.Google Scholar
Longeaud, C. and Tobbeche, S.: The influence of hopping on modulated photoconductivity. J. Phys. Condens. Matter. 21, 045508 (2009).CrossRefGoogle ScholarPubMed
Shockley, W. and Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. B 87, 835 (1952).CrossRefGoogle Scholar
Simmons, J.G. and Taylor, G.W.: Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B 4, 502 (1971).CrossRefGoogle Scholar
Cohen, M.H., Fritzsche, H., and Ovshinsky, S.R.: Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065 (1969).CrossRefGoogle Scholar
Kastner, M., Adler, D., and Fritzsche, H.: Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504 (1976).CrossRefGoogle Scholar
Adler, D., Shur, M.S., Silver, M., and Ovshinsky, S.R.: Threshold switching in chalcogenide-glass thin-films. J. Appl. Phys. 51, 3289 (1980).CrossRefGoogle Scholar
Jandieri, K., Rubel, O., Baranovski, S., Reznik, A., Rowlands, J., and Kasap, S.O: Lucky-drift model for impact ionization in amorphous semiconductors. J. Mater. Sci. Mater. Electron. 20, 221 (2008).CrossRefGoogle Scholar
Karpov, I.V., Mitra, M., Kau, D., Spadini, G., Kryokov, Y.A., and Karpov, V.G.: Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102, 124503 (2007).CrossRefGoogle Scholar
John, S., Soukhoulis, C., Cohen, M.H., and Economou, E.N.: Theory of electron band tails and the Urbach optical-absorption edge. Phys. Rev. Lett. 57, 1777 (1986).CrossRefGoogle ScholarPubMed
Stuke, J.: Review of optical and electrical properties of amorphous semiconductors. J. Non-Cryst. Solids 4, 1 (1970).CrossRefGoogle Scholar
Fantini, P., Brazzelli, S., Cazzini, E., and Mani, A.: Band gap widening with time induced by structural relaxation in Ge2Sb2Te5 films. Appl. Phys. Lett. 100, 013505 (2012).CrossRefGoogle Scholar
Lencer, D., Salinga, M., and Wuttig, M.: Design rules for phase-change materials in data storage applications. Adv. Mater. 23, 2030 (2011).CrossRefGoogle ScholarPubMed
Huang, B. and Robertson, J.: Bonding origin of optical contrast in phasechange memory materials. Phys Rev B 81, 081204 (2010).CrossRefGoogle Scholar
Edwards, A.H., Pineda, A.C., Schultz, P.A., Martin, M.G., Thompson, A.P., and Hjalmarson, H.P.: Theory of persistent, p-type, metallic conduction in c-GeTe. J. Phys. Condens. Matter. 17, L329 (2005).CrossRefGoogle Scholar