Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T15:09:34.379Z Has data issue: false hasContentIssue false

Defect-induced vibrational response of multi-walled carbon nanotubes using resonance Raman spectroscopy

Published online by Cambridge University Press:  01 December 2005

S.A. Curran*
Affiliation:
Physics Department, New Mexico State University, Las Cruces, New Mexico 88001
J.A. Talla
Affiliation:
Physics Department, New Mexico State University, Las Cruces, New Mexico 88001
D. Zhang
Affiliation:
Physics Department and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88001
D.L. Carroll
Affiliation:
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We systematically introduced defects onto the body of multi-walled carbon nanotubes through an acid treatment, and the evolution of these defects was examined by Raman spectroscopy using different excitation wavelengths. The D and D′ modes are most prominent and responsive to defect formation caused by acid treatment and exhibit dispersive behavior upon changing the excitation wavelengths as expected from the double resonance Raman (DRR) mechanism. Several weaker Raman resonances including D″ and L1 (L2) + D′ modes were also observed at the lower excitation wavelengths (633 and 785 nm). In addition, specific structural defects including the typical pentagon-heptagon structure (Stone–Wales defects) were identified by Raman spectroscopy. In a closer analysis we also observed Haeckelite structures, specifically Ag mode response in R5,7 and O5,6,7.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J. and Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997).CrossRefGoogle Scholar
2.Baughman, R.H., Zakhidov, A.A. and de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
3.Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C. and Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London A 362, 2065 (2004).CrossRefGoogle ScholarPubMed
4.Tekleab, D., Carroll, D.L., Samsonidze, G.G. and Yakobson, B.I.: Strain-induced electronic property heterogeneity of a carbon nanotube. Phys. Rev. Lett. 64, 035419 (2001).Google Scholar
5.McCarthy, B., Coleman, J.N., Curran, S.A., Dalton, A.B., Davey, A.P., Konya, Z., Fonseca, A., Nagy, J.B. and Blau, W.J.: Observation of site selective binding in a polymer nanotube composite. J. Mater. Sci. Lett. 19, 2239 (2000).CrossRefGoogle Scholar
6.Lee, S.B., Yoshino, K., Park, J.Y. and Par, Y.W.: Extrinsic photoconductivity in poly.3-dodecylthiophene. sandwich cells. Phys. Rev. Lett. 61, 3 (2000).Google Scholar
7.Stetter, J.R. and Maclay, G.J.: Carbon nanotubes and sensors: A review. Adv. Micro Nanosyst. 1, 357 (2004).CrossRefGoogle Scholar
8.Coleman, J.N., Dalton, A.B., Curran, S., Rubio, A., Davey, A.P., Drury, A., McCarthy, B., Lahr, B., Ajayan, P.M., Roth, S., Barklie, R.C. and Blau, W.: Phase Separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12, 3 (2000).3.0.CO;2-D>CrossRefGoogle Scholar
9.Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E. and Haddon, R.C.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).CrossRefGoogle ScholarPubMed
10.Dyke, C.A. and Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151 (2004).CrossRefGoogle Scholar
11.Lin, T., Bajpai, V., Ji, T. and Dai, L.: Chemistry of carbon nanotubes. Aust. J. Chem. 56, 635 (2003).CrossRefGoogle Scholar
12.Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y. and Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).CrossRefGoogle ScholarPubMed
13.Charlier, J-C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063 (2002).CrossRefGoogle ScholarPubMed
14.Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J. and Haddon, R.C.: Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127, 5990 (2005).CrossRefGoogle ScholarPubMed
15.Kawashima, Y. and Katagiri, G.: Observation of the out-of-plane mode in the Raman scattering from the graphite edge plane. Phys. Rev. B 59, 62 (1999).CrossRefGoogle Scholar
16.Kawashima, Y. and Katagiri, G.: Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 52 10 053 (1995).CrossRefGoogle ScholarPubMed
17.Tan, P., Hu, C., Dong, J. and Shen, W.: Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys. Rev. B 64, 214301 (2001).CrossRefGoogle Scholar
18.Cançado, L.G., Pimenta, M.A., Saito, R., Jorio, A., Ladeira, L.O., Grüneis, A., Filho, A.G. Souza, Dresselhaus, G. and Dresselhaus, M.S.: Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66, 35415 (2002).CrossRefGoogle Scholar
19.Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S. and Zandbergen, H.: Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
20.Anderson, N., Hartschuh, A., Cronin, S. and Novotny, L.: Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533 (2005).CrossRefGoogle ScholarPubMed
21.Jantoljak, H., Thomsen, C., Curran, S., Roth, S., Maser, W., Journet, C., Bernier, P., Kuzmany, H., Fink, J. and Mehring, M.: Raman Spectroscopy on Carbon Nanotubes, edited by Roth, S. (Mol. Nanostructures, Singapore, 1997), p. 459.Google Scholar
22.Jantoljak, H., Kuhlmann, U., Thomsen, C., Curran, S., Roth, S., Maser, W., Journet, C. and Bernier, P.: Micro-Raman spectra of single- and multiwalled carbon nanotubes. Mol. Mat. 10, 145 (1998).Google Scholar
23.Saito, R., Jorio, A., Filho, A.G. Souza, Dresselhaus, G., Dresselhaus, M.S. and Pimenta, M.A.: Probing phonon dispersion relations of graphite by double resonance raman scattering. Phys. Rev. Lett. 88, 27401 (2002).CrossRefGoogle ScholarPubMed
24.Saito, R., Grüneis, A., Samsonidze, G.G., Brar, V.W., Dresselhaus, G., Dresselhaus, M.S., Jorio, A., Cançado, L.G., Fantini, C., Pimenta, M.A. and Filho, A.G. Souza: Double resonance Raman spectroscopy of single-wall carbon nanotubes. N. J. Phys. 5 157.1 (2003).CrossRefGoogle Scholar
25.Tan, P., An, L., Liu, L., Guo, Z., Czerw, R., Carroll, D.L., Ajayan, P.M., Zhang, N. and Guo, H.: Probing the phonon dispersion relations of graphite from the double resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).CrossRefGoogle Scholar
26.Reich, S. and Thomsen, C.: Raman spectroscopy of graphite. Philos. Trans. R. Soc. London 362, 2271 (2004).CrossRefGoogle ScholarPubMed
27.Thomsen, C. and Reich, S.: Double resonance Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).CrossRefGoogle ScholarPubMed
28.Chakrapani, N., Curran, S., Wei, B., Ajayan, P.M., Carrillo, A. and Kane, R.S.: Spectral fingerprinting of structrual defects in plasma-treated carbon nanotubes. J. Mater. Res. 18, 2515 (2003).CrossRefGoogle Scholar
29.Curran, S.A., Ellis, A.V., Vijayaraghavan, A. and Ajayan, P.M.: Functionalization of carbon nanotubes using phenosafranin. J. Chem. Phys. 120, 4886 (2004).CrossRefGoogle ScholarPubMed
30.Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S. and Strevens, A.: A composite from poly(m-phenylenevinyleneco-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
31.Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y., Lee, T.R., Colbert, D.T. and Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).CrossRefGoogle ScholarPubMed
32.Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).CrossRefGoogle ScholarPubMed
33.Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N. and Rao, C.N.R.: Novel experiments with carbon nanotubes: Opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).CrossRefGoogle Scholar
34.Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R. and Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002).CrossRefGoogle Scholar
35.Crespi, V.H., Cohen, M.L. and Rubio, A.: In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093 (1997).CrossRefGoogle Scholar
36.Maultzsch, J., Reich, S. and Thomsen, C.: Raman scattering in carbon nanotubes revisited. Phys. Rev. B. 65, 233402 (2002).CrossRefGoogle Scholar
37.Stone, A.J. and Wales, D.J.: Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501 (1986).CrossRefGoogle Scholar
38.Ajayan, P.M., Ravikumar, V. and Charlier, J-C.: Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437 (1998).CrossRefGoogle Scholar
39.Terrones, H., Terrones, M., Hernández, E., Grobert, N., Charlier, J-C. and Ajayan, P.M.: New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716 (2000).CrossRefGoogle ScholarPubMed
40.Rocquefelte, X., Rignanese, G-M., Meunier, V., Terrones, H., Terrones, M. and Charlier, J-C.: How to identify Haeckelite structures: A theoretical study of their electronic and vibrational properties. Nano Lett. 4, 805 (2004).CrossRefGoogle Scholar