Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:05:56.091Z Has data issue: false hasContentIssue false

Damage accumulation and cyclic fatigue in Mg-PSZ at Hertzian contacts

Published online by Cambridge University Press:  03 March 2011

Antonia Pajares*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg. Maryland 20899
Lanhua Wei*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg. Maryland 20899
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg. Maryland 20899
David B. Marshall
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, California 91360
*
a)Guest Scientist, from Departamento de Física, Universidad de Extremadura. 06071-Badajoz, Spain.
b)Guest Scientist, from Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201.
Get access

Abstract

Hertzian contact damage in as-fired, peak-aged, and over-aged Mg-PSZ is studied, in single-cycle and multiple-cycle loading. Indentation stress-strain curves reveal a monotonically increasing quasi-plasticity component in the contact deformation with increasing aging time. A bonded-interface technique is used to obtain surface and subsurface views of the damage zones beneath the spherical indenter. Analytical techniques, including optical and scanning electron microscopy, acoustic emission, Raman spectroscopy, and thermal wave imaging, are used to characterize the damage. The damage patterns are fundamentally different in the three aging states: microfracture dominated in as-fired; tetragonal-monoclinic phase-transformation-dominated in peak-aged; monoclinic-phase twinning-dominated in over-aged. The damage accumulates with increasing number of cycles, most strongly in the as-fired state. It also increases with increasing test duration in the as-fired and over-aged states, but not perceptibly in the peak-aged. The results imply predominantly mechanical fatigue effects, augmented by a chemical component in the as-fired and over-aged states. Broader implications in relation to the susceptibilities of zirconia ceramics to fatigue degradation in concentrated stress configurations, with special relevance to the evolution of flaws at the microstructural level, are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garvie, R. C., Hannink, R. H. J., and Pascoe, R. T., Nature 258, 703 (1975).CrossRefGoogle Scholar
2Green, D. J., Hannink, R. H. J., and Swain, M.V., Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989).Google Scholar
3Hannink, R. H. J. and Swain, M. V., Ann. Rev. Mater. Sci. 24, 359408 (1994).CrossRefGoogle Scholar
4Dauskardt, R. H., Marshall, D. B., and Ritchie, R.O., J. Am. Ceram. Soc. 73, 893903 (1990).CrossRefGoogle Scholar
5Lathabai, S. and Hannink, R.H.J., in Science and Technology of Zirconia V, edited by Badwal, S.P.S., Bannister, M. J., and Hannink, R.H.J. (Technomic Publishing Co., Lancaster, PA, 1993), pp. 360370.Google Scholar
6Liu, S-Y. and Chen, I-W., J. Am. Ceram. Soc. 75, 11911204 (1992).CrossRefGoogle Scholar
7Liu, S-Y. and Chen, I-W., J. Am. Ceram. Soc. 77, 20252035 (1994).CrossRefGoogle Scholar
8Liu, S-Y. and Chen, I-W., J. Am. Ceram. Soc. 74, 12061216 (1991).CrossRefGoogle Scholar
9Steffen, A. A., Dauskardt, R. H., and Ritchie, R.O., J. Am. Ceram. Soc. 74, 12591268 (1991).CrossRefGoogle Scholar
10Guiberteau, F., Padture, N. P., Cai, H., and Lawn, B.R., Philos. Mag. A 68, 10031016 (1993).CrossRefGoogle Scholar
11Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 77, 25182522 (1994).CrossRefGoogle Scholar
12Guiberteau, F., Padture, N. P., and Lawn, B.R., J. Am. Ceram. Soc. 77, 18251831 (1994).CrossRefGoogle Scholar
13Lawn, B. R., Padture, N. P., Cai, H., and Guiberteau, F., Science 263, 11141116 (1994).CrossRefGoogle Scholar
14Cai, H., Kalceff, M.A. Stevens, and Lawn, B.R., J. Mater. Res. 9, 762770 (1994).CrossRefGoogle Scholar
15Cai, H., Padture, N. P., Hooks, B. M., and Lawn, B.R., J. Europ. Ceram. Soc. 13, 149157 (1994).CrossRefGoogle Scholar
16Cai, H., Kalceff, M. A. S., Hooks, B. M., Lawn, B. R., and Chyung, K., J. Mater. Res. 9, 26542661 (1994).CrossRefGoogle Scholar
17Xu, H. H. K., Wei, L., Padture, N. P., Lawn, B. R., and Yeckley, R.L., J. Mater. Sci. 30, 869878 (1995).CrossRefGoogle Scholar
18Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 78, 14311438 (1995).CrossRefGoogle Scholar
19Frank, F. C. and Lawn, B. R., Proc. R. Soc. London. A299, 291306 (1967).Google Scholar
20Lawn, B. R. and Wilshaw, T. R., J. Mater. Sci. 10, 10491081 (1975).CrossRefGoogle Scholar
21Evans, A. G. and Wilshaw, T. R., Acta Metall. 24, 939956 (1976).CrossRefGoogle Scholar
22Zeng, K., Breder, K., and Rowcliffe, D.J., Acta Metall. 40, 26012605 (1992).Google Scholar
23Pajares, A., Guiberteau, F., Lawn, B. R., and Lathabai, S., J. Am. Ceram. Soc. 78, 10831086 (1995).CrossRefGoogle Scholar
24Tabor, D., Hardness of Metals (Clarendon, Oxford, 1951).Google Scholar
25Swain, M. V. and Lawn, B. R., Phys. Status Solidi 35, 909923 (1969).CrossRefGoogle Scholar
26Swain, M. V. and Hagan, J. T., J. Phys. D: Appl. Phys. 9, 22012214 (1976).CrossRefGoogle Scholar
27Marshall, D. B., Shaw, M. C., Dauskardt, R. H., Ritchie, R. O., Readey, M. J., and Heuer, A.H., J. Am. Ceram. Soc. 73, 26592666 (1990).CrossRefGoogle Scholar
28Clarke, D. R. and Adar, F., J. Am. Ceram. Soc. 65, 284288 (1982).CrossRefGoogle Scholar
29Smith, D. T. and Wei, L., J. Am. Ceram. Soc. 78, 13011304 (1995).CrossRefGoogle Scholar
30Wei, L., Thermal Property Characterization of Single Crystal Diamond With Varying Isotopic Composition, Ph.D., Wayne State University, Detroit, MI, 1993.Google Scholar
31Hasselman, D. P. H., J. Composite Mater. 12, 403407 (1978).CrossRefGoogle Scholar
32Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. 42, 16831693 (1994).CrossRefGoogle Scholar
33Hagan, J. T. and Swain, M. V., J. Physics: D 11, 20912102 (1978).Google Scholar
34Hannink, R. H. J. and Swain, M. V., J. Mater. Sci. 16, 14281431 (1981).CrossRefGoogle Scholar
35Marshall, D. B. and Swain, M. V., J. Am. Ceram. Soc. 71, 399407 (1988).Google Scholar
36Lankford, J., J. Am. Ceram. Soc. 66, C212213 (1983).CrossRefGoogle Scholar
37Padture, N. P., J. Am. Ceram. Soc. 77, 519523 (1994).CrossRefGoogle Scholar
38Muddle, B. C. and Kelly, P. M., Materials Forum 11, 182193 (1988).Google Scholar
39Chen, I-W., J. Am. Ceram. Soc. 69, 189194 (1986).CrossRefGoogle Scholar
40Lawn, B. R., J. Am. Ceram. Soc. 66, 8391 (1983).CrossRefGoogle Scholar
41Ewart, L. and Suresh, S., J. Mater. Sci. 22, 11731192 (1987).CrossRefGoogle Scholar
42Suresh, S. and Brockenbrough, J. R., Acta Metall. 36, 14551470 (1988).CrossRefGoogle Scholar
43Suresh, S., Fatigue of Materials (Cambridge University Press, Cambridge, 1991).Google Scholar
44Padture, N. P. and Lawn, B. R., Acta Metall. 43, 16091617 (1995).CrossRefGoogle Scholar
45Lawn, B. R., Hockey, B. J., and Wiederhorn, S.M., J. Mater. Sci. 15, 12071223 (1980).CrossRefGoogle Scholar