Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T03:33:10.090Z Has data issue: false hasContentIssue false

CuO photocathode-embedded semitransparent photoelectrochemical cell

Published online by Cambridge University Press:  27 October 2016

Malkeshkumar Patel
Affiliation:
Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
Hong-Sik Kim
Affiliation:
Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
Dipal B. Patel
Affiliation:
Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
Joondong Kim*
Affiliation:
Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A semitransparent CuO film was applied for photoelectrochemical (PEC) cell to produce the record-high photocurrent (6.4 mA/cm2) for nanocrystalline monoclinic CuO photocathode. Large-scale affordable reactive-sputtering method was effectively formed Cu oxide films and sequential thermal processes efficiently controlled the Cu oxide phases with enhanced optical-transparency of Cu oxide films. Structural, physical, optical, and electrical properties of various Cu oxide films (CuO, Cu4O3, and Cu2O) were systematically investigated according to the sputtering condition and thermal processes. It was found that the energy band gap of CuO can be tuned from 1.7 to 1.9 eV by modulating the oxygen flow for reactive sputtering. Mott–Schottky analyses revealed the flat band potential close to the 0.96 V versus reversible hydrogen electrode and energy band edges of Cu oxide films. This state-of-the-art CuO photocathode would provide a strong potential for wide applications of the transparent PEC system of on-site energy generation.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zuttel, A., Remhof, A., Borgschulte, A., and Friedrichs, O.: Hydrogen: The future energy carrier. Philos. Trans. R. Soc., A 368(1923), 3329 (2010).CrossRefGoogle ScholarPubMed
Hu, S., Shaner, M.R., Beardslee, J.a., Lichterman, M., Brunschwig, B.S., and Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187), 1005 (2014).Google Scholar
Kanan, M.W. and Nocera, D.G.: In situ formation of an water containing phosphate and Co2+ . Science 321, 1072 (2008).Google Scholar
Lewerenz, H-J. and Peter, L.: Photoelectrochemical Water Splitting; Materials, Process and Architectures (Royal Society of Chemistry, Cambridge, 2013).Google Scholar
Ginley, D.S. and Cahen, D.: Fundamentals of Materials for Energy and Environmental Sustainability (Cambridge University Press, Cambridge, 2013).Google Scholar
Patel, M., Chavda, A., Mukhopadhyay, I., Kim, J., and Ray, A.: Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8, 2293 (2016).CrossRefGoogle ScholarPubMed
Lewis, N.S.: Research opportunities to advance solar energy utilization. Science 351(6271), aad1920 (2016).CrossRefGoogle ScholarPubMed
Hu, S., Xiang, C., Haussener, S., Berger, A.D., and Lewis, N.S.: An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6(10), 2984 (2013).Google Scholar
Smith, W.A., Sharp, I.D., Strandwitz, N.C., and Bisquert, J.: Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851 (2015).CrossRefGoogle Scholar
Prévot, M.S. and Sivula, K.: Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117(35), 17879 (2013).CrossRefGoogle Scholar
Abdi, F.F., Han, L., Smets, A.H.M., Zeman, M., Dam, B., and van de Krol, R.: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).CrossRefGoogle Scholar
Shi, X., Jeong, H., Oh, S.J., Ma, M., Zhang, K., Kwon, J., Choi, I.T., Choi, I.Y., Kim, H.K., Kim, J.K., and Park, J.H.: Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat. Commun. 7, 11943 (2016).Google Scholar
Kim, J.H., Kaneko, H., Minegishi, T., Kubota, J., Domen, K., and Lee, J.S.: Overall photoelectrochemical water splitting using tandem cell under simulated sunlight. ChemSusChem 9(1), 61 (2016).Google Scholar
Zhang, Q., Zhang, K., Xu, D., Yang, G., and Huang, H.: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).Google Scholar
Meyer, B.K., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P.J., Sander, T., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Blasing, J., Krost, A., Shokovets, S., Muller, C., and Ronning, C.: Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi 1509(8), 1487 (2012).Google Scholar
Chiang, C-Y., Epstein, J., Brown, A., Munday, J.N., Culver, J., and Ehrman, S.H.: Biological templates for anti reflective current collectors for photoelectrochemical cell applications. Nano Lett. 12, 6005 (2012).CrossRefGoogle Scholar
Debbichi, L., Marco de Lucas, M.C., Pierson, J.F., and Kruger, P.: Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C 116, 10232 (2012).Google Scholar
Heinemann, M., Eifert, B., and Heiliger, C.: Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3 . Phys. Rev. B: Condens. Matter Mater. Phys. 87(11), 3 (2013).Google Scholar
Lee, Y.S., Chua, D., Brandt, R.E., Siah, S.C., Li, J.V., Mailoa, J.P., Lee, S.W., Gordon, R.G., and Buonassisi, T.: Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv. Mater. 26, 4704 (2014).Google Scholar
Brown, K.E.R. and Choi, K-S.: Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films. Chem. Commun. 31, 3311 (2006).Google Scholar
de Jongh, P.E., Vanmaekelbergh, D., and Kelly, J.J.: Cu2O: A catalyst for the photochemical decomposition of water? Chem. Commun. 12, 1069 (1999).Google Scholar
Borgohain, K. and Mahamuni, S.: Formation of single-phase CuO quantum particles. J. Mater. Res. 17(05), 1220 (2002).Google Scholar
Samal, D. and Koster, G.: Manipulating oxygen sublattice in ultrathin cuprates: A new direction to engineer oxides. J. Mater. Res. 30(04), 463 (2015).Google Scholar
Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456 (2011).CrossRefGoogle ScholarPubMed
Luo, J., Steier, L., Son, M-K., Schreier, M., Mayer, M.T., and Grätzel, M.: Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848 (2016).Google Scholar
Koffyberg, F.P. and Benko, F.A.: A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Appl. Phys. 53(2), 1173 (1982).Google Scholar
Chiang, C.Y., Chang, M.H., Liu, H.S., Tai, C.Y., and Ehrman, S.: Process intensification in the production of photocatalysts for solar hydrogen generation. Ind. Eng. Chem. Res. 51(14), 5207 (2012).CrossRefGoogle Scholar
Chiang, C.Y., Shin, Y., Aroh, K., and Ehrman, S.: Copper oxide photocathodes prepared by a solution based process. Int. J. Hydrogen Energy 37(10), 8232 (2012).Google Scholar
Artioli, G.A., Mancini, A., Barbieri, V.R., Quattrini, M.C., Quartarone, E., Mozzati, M.C., Drera, G., Sangaletti, L., Gombac, V., Fornasiero, P., and Malavasi, L.: Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films. Langmuir 32, 1510 (2016).Google Scholar
Jin, Z., Zhang, X., Li, Y., Li, S., and Lu, G.: 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal. Commun. 8(8), 1267 (2007).Google Scholar
Zhang, L., Liu, Y-N., Zhou, M., and Yan, J.: Improving photocatalytic hydrogen evolution over CuO/Al2O3 by platinum-depositing and CuS-loading. Appl. Surf. Sci. 282, 531 (2013).CrossRefGoogle Scholar
Widiyandari, H., Purwanto, A., Balgis, R., Ogi, T., and Okuyama, K.: CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation. Chem. Eng. J. 180, 323 (2012).Google Scholar
Zheng, X.J., Wei, Y.J., Wei, L.F., Xie, B., and Wei, M.B.: Photocatalytic H2 production from acetic acid solution over CuO/SnO2 nanocomposites under UV irradiation. Int. J. Hydrogen Energy 35(21), 11709 (2010).CrossRefGoogle Scholar
Kargar, A., Jing, Y., Kim, S.J., Riley, C.T., Pan, X., and Wang, D.: ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7(12), 11112 (2013).Google Scholar
Kang, S.Z., Chen, L., Li, X., and Mu, J.: Composite photocatalyst containing Eosin y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water. Appl. Surf. Sci. 258(16), 6029 (2012).Google Scholar
Chiang, C-Y., Shin, Y., and Ehrman, S.: Li doped CuO film electrodes for photoelectrochemical cells. J. Electrochem. Soc. 159(2), B227 (2012).Google Scholar
Masudy-Panah, S., Siavash Moakhar, R., Chua, C.S., Tan, H.R., Wong, T.I., Chi, D., and Dalapati, G.K.: Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS Appl. Mater. Interfaces 8, 1206 (2016).Google Scholar
Masudy-Panah, S., Moakhar, R.S., Chua, C.S., Kushwaha, A., Wong, T.I., and Dalapati, G.K.: Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode. RSC Adv. 6(35), 29383 (2016).Google Scholar
Berg, S. and Nyberg, T.: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476(2), 215 (2005).Google Scholar
Liljeholm, L.: Reactive sputter deposition of functional thin films. (2012). https://uu.diva-portal.org/smash/get/diva2:532900/FULLTEXT01.pdf. Google Scholar
Pierson, J.F., Thobor-keck, A., and Billard, A.: Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210, 359 (2003).Google Scholar
Zheng, X.G., Sakurai, Y., Okayama, Y., Yang, T.Q., Zhang, L.Y., Yao, X., Nonaka, K., and Xu, C.N.: Dielectric measurement to probe electron ordering and electron-spin interaction. J. Appl. Phys. 92(5), 2703 (2002).CrossRefGoogle Scholar
Wu, W.B., Hiraoka, N., Huang, D.J., Huang, S.W., Tsuei, K.D., Van Veenendaal, M., Van Den Brink, J., Sekio, Y., and Kimura, T.: Effective orbital symmetry of CuO: Examination by nonresonant inelastic x-ray scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 88(20), 205129 (2013).Google Scholar
Sarkar, S., Jana, P.K., Chaudhuri, B.K., and Sakata, H.: Copper (II) oxide as a giant dielectric material. Appl. Phys. Lett. 89(21), 212905 (2006).Google Scholar
Van De Krol, R. and Grätzel, M.: Photoelectro-Chemical Hydrogen Production (Springer, Dordrecht, 2012).CrossRefGoogle Scholar
Kim, H-S., Patel, M., Park, H-H., Ray, A., Jeong, C., and Kim, J.: Thermally stable silver nanowires-embedding metal oxide for Schottky junction solar cells. ACS Appl. Mater. Interfaces 8, 8662 (2016).Google Scholar
Kim, H. and Kim, J.: Rapid thermal-treated transparent conductor on microscale Si-pillars for photoelectric applications. Mater. Lett. 146, 26 (2015).Google Scholar
Kim, H., Hong, S.H., Chang Park, Y., Lee, J., Jeon, C.H., and Kim, J.: Rapid thermal-treated transparent electrode for photodiode applications. Mater. Lett. 115, 45 (2014).Google Scholar
Hapase, M.G., Gharpurey, M.K., and Biswas, A.B.: The oxidation of vacuum deposited films of copper. Surf. Sci. 9(1), 87 (1968).CrossRefGoogle Scholar
Zhu, Y., Mimura, K., and Isshiki, M.: Oxidation mechanism of Cu2O to CuO at 600–1050 °C. Oxid. Met. 62, 207 (2004).Google Scholar
Poulston, S., Parlett, P.M., Stone, P., and Bowker, M.: Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24(12), 811 (1996).Google Scholar
Patel, M., Kim, H., and Kim, J.: All transparent metal oxide ultraviolet photodetector. Adv. Electron. Mater. 1(11), 1500232 (2015).CrossRefGoogle Scholar
Kim, J., Patel, M., and Kim, H.: All-transparent photoelectric devices using metal oxide. SPIE Newsroom 1, 9 (2016).Google Scholar
Morales-Guio, C.G., Tilley, S.D., Vrubel, H., Grätzel, M., and Hu, X.: Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5(1), 3059 (2014).Google Scholar
Zhao, Y-F., Yang, Z-Y., Zhang, Y-X., Jing, L., Guo, X., Ke, Z., Hu, P., Wang, G., Yan, Y-M., and Sun, K-N.: Cu2O decorated with cocatalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light. J. Phys. Chem. C 118(26), 14238 (2014).Google Scholar
Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L., and Jin, S.: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274 (2013).Google Scholar
Supplementary material: File

Patel et al. supplementary material

Supplementary data

Download Patel et al. supplementary material(File)
File 2.6 MB