Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:24:59.308Z Has data issue: false hasContentIssue false

Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate

Published online by Cambridge University Press:  31 January 2011

Hsin-Yi Lee
Affiliation:
Research Division, Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China, and Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Tai-Bor Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Get access

Abstract

The kinetics of in situ crystallization of LaNiO3 thin films in sputtering deposition at temperatures ranging from 250 to 450 °C and isothermal crystallization of room-temperature (RT) sputtered LaNiO3 thin films in annealing at 350–500 °C were investigated by the x-ray diffraction method. The crystallization in both cases basically followed the Johnson–Mehl–Avrami (JMA) relation. However, different crystallization kinetics were observed. The transformation index and activation energy of crystallization in high temperature sputtering were about 1.5 and 33 kJ/mole, respectively, while in the annealing of RT-sputtered films, 1.0 and 63 kJ/mole were found. From the determined transformation index, it is suggested that the crystallization rate in high temperature sputtering was determined by a diffusion-controlled process of lateral growth with a decreasing nucleation rate of crystallites in the adsorption layer. However, the annealed films crystallized by an interface-controlled and one-dimensional growth of existing nuclei.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingor, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
2.Jiang, M. C. and Wu, T. B., J. Mater. Res. 9, 1879 (1994).CrossRefGoogle Scholar
3.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).Google Scholar
4.Eom, C. B., Dover, R. B. V., Phillips, J. M., Fliming, R. M., Cava, R. J., Marshall, J. H., Werder, D. J., Chen, C. H., and Fork, D. K.; in Ferroelectric Thin Films III, edited by Mayers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.Google Scholar
5.Vijat, D. P. and Desu, S. B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
6.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).Google Scholar
7.Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
8.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).CrossRefGoogle Scholar
9.Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1957).CrossRefGoogle Scholar
10.Rajeex, K. P., Shivakuma, G. V., and Raychaudhmi, A. K., Solid State Commun. 79, 591 (1991).Google Scholar
11.Satyakahmi, K. M., Mallya, R. M., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233 (1993).Google Scholar
12.Ichinose, H., Nagano, M., Katsuki, H., and Takag, H., J. Mater. Sci. 29, 5115 (1994).Google Scholar
13.Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J.M., and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).Google Scholar
14.Shyu, M. J., Hong, T. J., and Yu, T. B., Jpn. J. Appl. Phys. 34, 3647 (1995).Google Scholar
15.Shyu, M. J., Hong, T. J., and Wu, T. B., Mater. Lett. 23, 221 (1995).CrossRefGoogle Scholar
16.Chen, M. S., Wu, J. M., and Wu, T. B., Jpn. J. Appl. Phys. 34, 4870 (1995).Google Scholar
17.Chen, M. S., Wu, T. B., and Wu, J. M., Appl. Phys. Lett. 68 (10), 1430 (1996).CrossRefGoogle Scholar
18.Wu, Chii-Ming, Hong, Tian-Jue, and Wu, Tai-Bor, J. Mater. Res. 12, 2158 (1997).Google Scholar
19.Tseng, T. F., Yang, C. C., Liu, K. S., Wu, J. M., Wu, T.B., and Lin, I. N., Jpn. J. Appl. Phys. 35, 4347 (1996).Google Scholar
20.Petford-Long, A. K., Doole, R. C., Afonso, C. N., and Solis, J., J. Appl. Phys. 77 (2), 607 (1995).CrossRefGoogle Scholar
21.Scholte, P. M. L. O., Mater. Sci. Eng. B5, 233 (1990).Google Scholar
22.Lee, Hsin-Yi, Wu, Tai-Bor, and Lee, Jyh-Fu, J. Appl. Phys. 80 (4), 2175 (1996).Google Scholar
23. Hsin-Yi Lee and Tai-Bor Wu, J. Mater. Res. 12, 3165 (1997).Google Scholar
24.Hong, T. J., Ph.D. Thesis (in Chinese), National Tsing Hua University, Taiwan, 1995.Google Scholar
25. JCPDS 34–314 and 33–710, Wustenberg, H., Hahn, Inst. Fur Kristallogr., Techische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.Google Scholar
26. JCPDS 35–1242, Brisi, C., Vallino, M., and Abbattistra, F., J. Less-Comm. Met. 79 215 (1981).CrossRefGoogle Scholar
27.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., 1978), p. 134 and p. 292.Google Scholar
28.Jena, A. K., and Chaturvedi, M. C., in Phase Transformation in Materials, edited by Stewart, B. M.et al. (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992), p. 66.Google Scholar
29.Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar
30.Avrami, M., J. Chem. Phys. 8, 212 (1940).Google Scholar
31.Avrami, M., J. Chem. Phys. 9, 177 (1941).Google Scholar
32.Ranganathan, S. and Heimendahl, M. V., J. Mater. Sci. 16, 2401 (1981).Google Scholar
33.Morilla, M. C., Afonso, C. N., Petford-Long, A. K., and Doole, R. C., Philos. Mag. 73 (4), 1237 (1996).Google Scholar