Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:46:57.177Z Has data issue: false hasContentIssue false

Crystallization Kinetics and Phase Transformation of Li2O–Fe2O3–MnO2–CaO–P2O5–SiO2 Glass

Published online by Cambridge University Press:  31 January 2011

Chi-Shiung His
Affiliation:
Department of Materials Engineering, Kaohsiung Polytechnic Institute, 1, Hsueh-Cheng Road, Section 1, Ta-Hsu, Kaohsiung County, Taiwan, Republic of China
Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Get access

Abstract

The crystallization kinetics and phase transformation of 10Li2O–14Fe2O3–11MnO2–25CaO–5P2O5–35SiO2 (LFMCPS) glass have been investigated using differential thermal analysis (DTA), Χ-ray diffraction (XRD), and scanning electron microscopy (SEM). The major crystalline phase determined by XRD analysis was triphylite [Li(Fe0.5Mn0.5)PO4], β–wollastonite (β CaO SiO2) and magnetite (Fe3O4) as the minor phases. The nonisothermal kinetics of crystallization of the LMFCPS glass was investigated using DTA analysis. The activation energy of crystallization for LFMCPS glass was 74.6 kcalymol. The growth morphology parameter n was 0.98 at a heating rate of 5 °C/min and decreased to 0.74 as the heating rate increased to 20 °C/min. The numerical factor of crystallization mechanism m was 0.57 at low crystallization temperature and gradually decreased as the temperature increased. For the experiment, the parameters n and m were approximately one. These results indicated that the surface nucleation was dominant in LFMCPS glass crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hench, L. L., Splinter, R. J., Allen, W. C., and Greenlee, T. K., J. Biomed. Mater. Res. Symp., No. 2 (part 1) (1972), pp. 1743.Google Scholar
2.Wilson, J., in Glass-Current Issues, edited by Wright, A. F. and Dupuy, J. (Martinces Nijhoff Publishers, Dordrecht, 1985), pp. 662669.CrossRefGoogle Scholar
3.Brömer, H., Deutscher, K., Blencke, B., Pfeil, E., and Strung, V., Science of Ceramic (Grafiche Galeati, Imola, Italy, 1977), Vol. 9, pp. 219225.Google Scholar
4.Kokubo, T., Ito, S., Huang, Z. T., Hayashi, T., Sakka, S., Kitsugi, T., and Yamamuro, T., J. Biomed. Mater. Res. 24, 331 (1990).Google Scholar
5.Kokubo, T., J. Non-Cryst. Solids 120, 138 (1990).Google Scholar
6.Wu, S. C. and Hon, M. H., J. Ceram. Soc. Jpn. 101, 626 (1993).Google Scholar
7.Vogel, W., Chemistry of Glass (The American Ceramic Society, Westerville, OH, 1985), p. 251.Google Scholar
8.Ogino, M. and Hench, L. L., J. Non-Cryst. Solids 38/39, 673 (1980).CrossRefGoogle Scholar
9.Ogino, M., Ohuchi, F., and Hench, L. L., J. Biomed. Mater. Res. 14, 55 (1989).CrossRefGoogle Scholar
10.Wu, S. C., Wang, C. L., and Hon, M. H., J. Ceram. Soc. Jpn. 103, 99 (1995).Google Scholar
11.Luderer, A. A., Borrelli, N. F., Panzarino, J. N., Mansfield, G. R., Hess, D. M., Brown, J. L., and Barnell, E. H., Radiation Res. 94, 190 (1983).Google Scholar
12.O'Horo, M. and Steinitz, R., Mater. Res. Bull. 3, 117 (1968).CrossRefGoogle Scholar
13.Auric, P., Dang, N. V., Bandyopadhyay, A. K., and Zarzycki, J., J. Non-Cryst. Solids 50, 97 (1982).Google Scholar
14.Komatsu, T. and Soga, N., J. Mater. Sci. 19, 2353 (1984).Google Scholar
15.Ebisawa, Y., Sugimoto, Y., Hayashi, T., Kokubo, T., Ohura, K., and Yamamuro, T., J. Ceram. Soc. Jpn. 99, 7 (1971).Google Scholar
16.Ozawa, T., Polym. 12, 150 (1971).CrossRefGoogle Scholar
17.Sestak, J., Phys. Chem. Glasses 15, 137 (1974).Google Scholar
18.Zdaniewski, W., J. Am. Ceram. Soc. 58, 163 (1975).CrossRefGoogle Scholar
19.Matusita, K., Sakka, S., and Matsui, Y., J. Mater. Sci. 10, 961 (1975).Google Scholar
20.Matusita, K., Sakka, T., Maki, T., and Tashiro, M., J. Mater. Sci. 10, 94 (1978).CrossRefGoogle Scholar
21.Marotta, A. and Buri, A., Thermochim. Acta 25, 155 (1978).Google Scholar
22.Marotta, A., Buri, A., and Valent, G. L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar
23.Matusita, K. and Sakka, S., Phys. Chem. Glasses 20, 81 (1979).Google Scholar
24.Yannacopoulos, S. and Kasap, S. O., J. Mater. Res. 5, 789 (1990).Google Scholar
25.McMillan, P. W., Glass-Ceramic (Academic Press, New York, 1979), pp. 3637.Google Scholar
26.Marotta, A., Buri, A., Branda, F., and Saiello, S., in Nucleation and Crystallization in Glasses, edited by Simmons, J. H., Uhlmann, D. R., and Beall, G. H. (The American Ceramic Society, Westerville, OH, 1981), pp. 146152.Google Scholar
27.Borchardt, H. J. and Danields, F., J. Am. Chem. Soc. 79, 41 (1957).Google Scholar
28.Nakagawa, K. and Izumitani, T., Phys. Chem. Glasses 10, 179 (1969).Google Scholar
29.Tomagawa, M., Phys. Chem. Glasses 13 161 (1972).Google Scholar
30.Matusita, K. and Tashiro, M., J. Non-Cryst. Solids 11, 471 (1973).CrossRefGoogle Scholar
31.Matusita, K. and Tashiro, M., Phys. Chem. Glasses 14, 77 (1973).Google Scholar
32.Matusita, K. and Tashiro, M., Yogyo-Kyokai-Shi (J. Ceram. Soc. Jpn.) 81, 500 (1973).Google Scholar
33.Matusita, K., Maki, T., and Tashiro, M., Phys. Chem. Glasses 15, 106 (1974).Google Scholar
34.Ham, H. S., J. Chem. Phys. Solids 6, 385 (1958).Google Scholar