Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:49:15.043Z Has data issue: false hasContentIssue false

Crystalline phases of sol-gel ZrO2 in the ZrO2-SiO2 system: Differential thermal analysis and electron microscopy studies

Published online by Cambridge University Press:  03 March 2011

D.R. Acosta
Affiliation:
Instituto de Física, UNAM, A.P. 20–364, 01000 México D. F., Mexico
O. Novaro
Affiliation:
Instituto de Física, UNAM, A.P. 20–364, 01000 México D. F., Mexico
T. López
Affiliation:
Depart. of Chemistry, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55–534, 09340, México D.F., Mexico
R. Gómez
Affiliation:
Depart. of Chemistry, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55–534, 09340, México D.F., Mexico
Get access

Abstract

Zirconium oxide dispersed in silica was synthesized by the cogelation of tetraethoxysilane and zirconium acetate. For the gelation, acid and basic media were used. The final zirconia concentration was around 6.7 wt. %. Differential thermal analysis, thermogravimetric analysis, as well as electron microscope techniques were used for the characterization of the samples. It was found that the stabilization of the crystalline phases depends on the preparation conditions and thermal treatments. Tetragonal and monoclinic ZrO2 phases were identified in basic preparations. However, in acidic samples only low-temperature tetragonal phase was identified.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).Google Scholar
2Davis, B. H., J. Am. Ceram. Soc. 67(8), C-168 (1984).Google Scholar
3Berstein, E., Blanchin, M. G., Ravelle, R., and Rodriguez, J., J. Mater. Sci. 27, 6519 (1992).CrossRefGoogle Scholar
4Sol-gel Technology, edited by Klein, L. C. (Noyes, Park Ridge, NJ, 1988).Google Scholar
5Colomban, Ph., Ceram. Int. 15, 23 (1989).CrossRefGoogle Scholar
6Campaniello, J., Rabinovich, E. M., Berthet, P., Recvcolevschi, A., and Kopylov, N.A., in Better Ceramics Through Chemistry IV, edited by B.J.J. Zelinski, Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 541.Google Scholar
7Colomban, Ph. and Mazerolles, L., J. Mater. Sci. 26, 3503 (1990).CrossRefGoogle Scholar
8Garvie, R. C., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
9Murase, Y. and Kato, E., J. Am. Ceram. Soc. 66, 196 (1983).CrossRefGoogle Scholar
10Samdi, A., Th. Grollier, Durand, B., and Roubin, M., Ann. Chim. Fr. 13, 71 (1988).Google Scholar
11Lopez, T., Gomez, R., Ferrat, G., Dominguez, J., and Schifter, I., Chem. Lett, 1941 (1992).CrossRefGoogle Scholar
12Edington, J. W., Electron Diffraction in the Electron Microscope (Philips Technical Library, 1975), Vol. 2.Google Scholar
13Andres, K., Phil, D., Dyson, D. J., and Keown, S. R., Interpretation of Electron Diffraction Patterns (Plenum Press, New York, 1967).Google Scholar
14Spence, J. H., Experimental High Resolution Electron Microscopy (Clarendon Press, Oxford, 1981).Google Scholar
15Levin, E., Robbins, C., and McMurdie, H., Phase Diagrams for Ceramists (The American Ceramics Society, Westerville, OH, 1964), Vol. I.Google Scholar