Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T06:27:39.576Z Has data issue: false hasContentIssue false

Crystal Structure–microwave Dielectric Property Relations in R2BaZnO5 (R= Sm, Eu, Gd, Dy, Ho, Er, and Tm) Ceramics

Published online by Cambridge University Press:  31 January 2011

Akinori Kan
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Hirotaka Ogawa
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Get access

Abstract

R2BaZnO5 (R = Sm, Eu, Gd, Dy, Ho, Er, and Tm) were synthesized, and the effects of the differences in ionic radii of R ions on the microwave dielectric properties and crystal structure have been investigated by using x-ray powder diffraction. It was shown that the R2BaZnO5compounds have an orthorhombic crystal structure with Pnma (No. 62) and the lattice parameters of the samples increase linearly with the increase in the ionic radii of the R ions. The dielectric constants (εr) of R2BaZnO5sintered at the optimum temperatures vary linearly from 16.1 to 19.3, suggesting that these variations in εr are the result of the differences in the ionic polarizabilities of R ions. Moreover, it is suggested that the variations in the valences of R ions determined by using bond valence sum may exert an influence on quality factor (Qf ), because the values of valences of R ions in R(1)O7 polyhedra and Qf exhibit similar tendencies with changes in the ionic radii of R ions. In the R2O3–BaO–ZnO system, Dy2BaZnO5showed the appropriate microwave dielectric properties: εr = 17.1, Qf = 29669 GHz, and τf = −1.5 ppm/°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Bryan, H.M., Gallagher, P.K., Berkstresser, G.W., and Brandle, C.D., J. Mater. Res. 5, 183 (1990).Google Scholar
Dube, D.C. and Scheel, H.J., J. Appl. Phys. 75, 126 (1994).CrossRefGoogle Scholar
Colla, E.L., Reaney, I.M., and Setter, N., J. Appl. Phys. 74, 3414 (1993).CrossRefGoogle Scholar
Sivasubramanian, V., Murthy, V.R.K., and Viswanathan, B., Jpn. J. Appl. Phys. 36, 194 (1997).Google Scholar
Lancaster, M.J., Passive Microwave Device Applications of High-Temperature Superconductor. (Cambridge University Press, Cambridge, United Kingdom, 1997).Google Scholar
Takezoe, H., Kondo, K., Fukuda, A., and Kuze, E., Jpn. J. Appl. Phys. 21, L627 (1982).Google Scholar
Watanabe, M., Ogawa, H., Ohsato, H., and Humphreys, C., Jpn. J. Appl. Phys. 37, 5360 (1998).Google Scholar
Michel, C. and Raveau, B., J. Solid State Chem. 43, 73 (1982).Google Scholar
Ogawa, H., Watanabe, M., Ohsato, H., and Humphreys, C., Proceedings of the Eleventh IEEE International Symposium on Application of Ferroelectrics, ISAF 1998 (IEEE, Piscataway, NJ, 1998), p. 517.Google Scholar
Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
Izumi, F., in Rietveld Method, edited by Young, R.A. (Oxford University Press, Oxford, United Kingdom, 1993), Chap. 13.Google Scholar
Hakki, B.W. and Coleman, P.D., IRE Trans. Microwave Theory Tech. MTT–8, 402 (1960).Google Scholar
Shannon, R.D., Acta. Crystallogr. A 32, 751 (1976).Google Scholar
Salinas-Sanchez, A., Garcia-Munoz, J.L., Rodriguez-Carvajal, J., Saez-Puche, R., and Martinez, J.L., J. Solid State Chem. 100, 201 (1992).Google Scholar
Tabi, M., Aride, J., Darriet, J., Moqine, A., and Boukhari, A., J. Solid State Chem. 86, 233 (1990).Google Scholar
Kan, A., Ogawa, H., Ohsato, H., and Ishihara, S., J. Eur. Ceram. Soc. 21, 2593 (2001).Google Scholar
Cho, S.Y., Kim, I.T., and Hong, K.S., J. Mater. Res. 14, 114 (1999).CrossRefGoogle Scholar
Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
Kucheiko, S., Choi, J.W., Kim, H.J., and Jung, H.J., J. Am. Ceram. Soc. 79, 2739 (1996).CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D., Acta Crystallogr. B 41, 244 (1985).CrossRefGoogle Scholar
Brese, N.E. and O’keeffe, M., Acta Crystallogr. B 47, 192 (1991).CrossRefGoogle Scholar