Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:04:39.465Z Has data issue: false hasContentIssue false

Crystal structure of HgTlBa2CuOx studied by high-resolution electron microscopy

Published online by Cambridge University Press:  31 January 2011

Takeo Oku
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
Satoru Nakajima
Affiliation:
Department of Chemistry, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
Get access

Abstract

The structure model for HgTlBa2CuOx was proposed from high-resolution electron microscopy using residual indices. Averaged digital high-resolution image of the HgTlBa2CuOx showed the existence of separated Hg layers and oxygen vacancies in the double (Hg, Tl) layers. Image calculations based on the proposed structure model of HgTlBa2CuO5 agreed well with the observation, and showed low residual values. The present result indicates the stability of the (Hg, Tl) double layer structure would be due to the formation of oxygen vacancies in the Hg layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature (London) 362, 226 (1993).CrossRefGoogle Scholar
2.Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
3.Hirabayashi, M., Tokiwa, K., Tokumoto, M., and Ihara, H., Jpn. J. Appl. Phys. 32, L1206 (1993).CrossRefGoogle Scholar
4.Nakajima, S., Kikuchi, M., Atou, T., Kikuchi, M., and Syono, Y., Jpn. J. Appl. Phys. 33, 1863 (1994).CrossRefGoogle Scholar
5.Radaelli, P. G., Marezio, M., Perroux, M., de Brion, S., Tholence, J. L., Huang, Q., and Santoro, A., Science 265, 380 (1994).CrossRefGoogle Scholar
6.Radaelli, P. G., Marezio, M., Tholence, J. L., de Brion, S., Loureiro, S., Santoro, A., Huang, Q., Capponi, J. J., Alario Franco, M., and Chaillout, C., Physica C 235–240, 925 (1994).CrossRefGoogle Scholar
7.Jia, Y. X., Lee, C. S., and Zettl, A., Physica C 234, 24 (1994).CrossRefGoogle Scholar
8.Bryntse, I., Physica C 226, 184 (1994).CrossRefGoogle Scholar
9.Nakajima, S., Oku, T., Nagase, K., and Syono, Y., Physica C 262, 1 (1996).CrossRefGoogle Scholar
10.Wu, X-J., Tokiwa-Yamamoto, A., Tatsuki, T., Adachi, S., and Tanabe, K., Physica C 275, 179 (1997).CrossRefGoogle Scholar
11.Shindo, D., Oku, T., Kudoh, J., and Oikawa, T., Ultramicroscopy 54, 221 (1994).CrossRefGoogle Scholar
12.Smith, A. R. and Eyring, L., Ultramicroscopy 8, 65 (1982).CrossRefGoogle Scholar
13.Hiraga, K., Oku, T., Shindo, D., and Hirabayashi, M., J. Electron Microsc. Technique 12, 228 (1989).CrossRefGoogle Scholar
14.Oku, T., Shindo, D., Nakajima, S., Tokiwa, A., Kikuchi, M., Syono, Y., and Hiraga, K., Studies of High Temperature Superconductors (Nova Science Pub., 1995), Vol. 15, p. 103.Google Scholar
15.Tokiwa, A., Oku, T., Nagoshi, M., Kikuchi, M., Hiraga, K., and Syono, Y., Physica C 161, 459 (1989).CrossRefGoogle Scholar
16.Tokiwa, A., Oku, T., Nagoshi, M., Shindo, D., Kikuchi, M., Oikawa, T., Hiraga, K., and Syono, Y., Physica C 172, 155 (1990).CrossRefGoogle Scholar
17.Nakajima, S., Kikuchi, M., Oku, T., Kobayashi, N., Suzuki, T., Nagase, K., Hiraga, K., Muto, Y., and Syono, Y., Physica C 160, 458 (1989).CrossRefGoogle Scholar
18.Nakajima, S., Oku, T., Suzuki, R., Kikuchi, M., Hiraga, K., and Syono, Y., Physica C 214, 80 (1993).CrossRefGoogle Scholar