Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T14:49:00.343Z Has data issue: false hasContentIssue false

Crystal orientation and surface morphology of face-centered-cubic metal thin films deposited upon single-crystal ceramic substrates using pulsed laser deposition

Published online by Cambridge University Press:  03 March 2011

Andrew J. Francis
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Paul A. Salvador*
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cu, Pt, Ag, and Au were deposited on (100)-oriented ceramic substrates (SrTiO3, LaAlO3, and MgO). Over a wide range of temperatures (room temperature to 600 °C), Cu films were (100)-oriented and exhibited cube-on-cube epitaxy. Epitaxial Pt(100) films were obtained only at high temperature; oriented Pt(111) films were obtained at lower temperatures. Ag and Au were never obtained as purely (100)-oriented samples, although the amount of (100)-film increased with increasing temperature. Three-dimensional islands formed for all metals at higher temperatures, while flatter film surfaces developed at lower temperatures. At any given temperature, the surface roughness of films on SrTiO3(100) increased in the order Pt < Cu < Au < Ag. The variations in film structural characteristics are described well by considering the metals’ (i) surface/interfacial energies, (ii) surface energy anisotropies, and (iii) surface diffusion coefficients. Flat, epitaxial growth is promoted by low-energy interfaces, low surface energy anisotropies, and slow surface diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Campbell, C.T.: Ultrathin metal films and particles on oxide surfaces: Structural, electronic, and chemisorptive properties. Surf. Sci. Rep. 27, 1 (1997).CrossRefGoogle Scholar
2Handbook of Thin Film Process Technology edited by Glocker, D.A. and Shah, S.I. (Institute of Physics Pub., Bristol, UK, 1995).Google Scholar
3Harp, G.R.: Transition metal thin film epitaxy, in Thin Films: Heteroepitaxial Systems edited by Liu, W.K. and Santos, M.B. (World Scientific Publishing, Singapore, 1999), pp. 117166.CrossRefGoogle Scholar
4Niwa, K., Kotaka, Y., Goto, Y., and Imanaka, Y.: Studies on metal-ceramic interfaces, in Ceramic Interfaces: Properties and Applications edited by Smart, R.S.C. and Nowotny, J. (IOM Communications, London, UK, 1998), pp. 409418.Google Scholar
5Coffey, K.R., Parker, M.A., and Howard, J.K.: High anisotropy L10 thin films for longitudinal recording. IEEE Trans. Magn. 31, 2737 (1995).CrossRefGoogle Scholar
6Loffler, F.: Functional metal-based coatings on ceramic substrates. Surf. Coat. Technol. 132, 222 (2000).CrossRefGoogle Scholar
7Field, D.P., Sanchez, J.E., Park, N-J., and Besser, P.R.: Texture evolution in thin Cu films and lines. Mater. Sci. Forum 495–497, 1323 (2005).CrossRefGoogle Scholar
8Goldstein, R.V., Sarychev, M.E., Shirabalkin, D.B., Vladimirov, A.S., and Zhitnikovpg, Y.V.: Modeling of electromigration and the void nucleation in the thin-film interconnects of integrated circuits. Int. J. Fract. 109, 91 (2001).CrossRefGoogle Scholar
9Gungor, A., Barmak, K., Rollett, A.D., Cabral, C. Jr., and Harper, J.M.E.: Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) alloy thin films. J. Vac. Sci. Technol., B 20, 2314 (2002).CrossRefGoogle Scholar
10Harper, J.M.E. and Rodbell, K.P.: Microstructure control in semiconductor metalization. J. Vac. Sci. Technol., B 15, 763 (1997).CrossRefGoogle Scholar
11Kozaczek, K.: In-line phase and texture control in microelectronics industry. Mater. Sci. Forum 495–497, 1343 (2005).CrossRefGoogle Scholar
12Nowell, M.M. and Field, D.P.: Texture and grain boundary structure dependence of hillock formation in thin metal films, in Materials Reliability in Microelectronics VIII, edited by Bravman, J., Marieb, T., Lloyd, J.R. and Korhonen, M.A. (Mater. Res. Soc. Symp. Proc. 516, Warrendale, PA, 1998), pp. 115120.Google Scholar
13Nucci, J.A., Straub, A., Bischoff, E., Arzt, E., and Volkert, C.A.: Growth of electromigration-induced hillocks in Al interconnects. J. Mater. Res. 17, 2727 (2002).CrossRefGoogle Scholar
14Saha, S.K., Howell, R.S., and Hatalis, M.K.: Elimination of hillock formation in Al interconnects using Ni or Co. J. Appl. Phys. 86, 625 (1999).CrossRefGoogle Scholar
15Was, G.S., Srolovitz, D.J., and Liang, D.: Microstructure control for thin film metallization, in Thin Films—Structure and Morphology, edited by Moss, S., Ila, D., Cammarata, R.C., Chason, E.H., Einstein, T.L. and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 441, Warrendale, PA, 1997), pp. 311322.Google Scholar
16Henry, C.R.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 235 (1998).CrossRefGoogle Scholar
17Finnis, M.W.: Theory of metal-ceramic interfaces. J. Phys.: Condens. Matter 8, 5811 (1996).Google Scholar
18Ahn, K.H., Baik, S., and Kim, S.S.: Change of growth orientation in Pt films epitaxially grown on MgO(001) substrates by sputtering. J. Mater. Res. 17, 2334 (2002).CrossRefGoogle Scholar
19Akai, D., Hirabayashi, K., Yokawa, M., Sawada, K., and Ishida, M.: Epitaxial growth of Pt(001) thin films on Si substrates using an epitaxial γ–Al2O3(001) buffer layer. J. Cryst. Growth 264, 463 (2004).CrossRefGoogle Scholar
20Chen, X., Garrent, T., Liu, S.W., Lin, Y., Zhang, Q.Y., Dong, C., and Chen, C.L.: Scanning tunneling microscopy studies of growth morphology in highly epitaxial c-axis oriented Pt thin film on (001) SrTiO3. Surf. Sci. 542, L655 (2003).CrossRefGoogle Scholar
21Gatel, C., Baules, P., and Snoeck, E.: Morphology of Pt islands grown on MgO(001). J. Cryst. Growth 252, 424 (2003).CrossRefGoogle Scholar
22Kim, M.H., Park, T-S., Yoon, E., Lee, D-S., Park, D-Y., Woo, H-J., Chun, D-I., and Ha, J.: Changes in preferred orientation of Pt thin films deposited by dc magnetron sputtering using Ar/O2 gas mixtures. J. Mater. Res. 14, 1255 (1999).CrossRefGoogle Scholar
23Leuchtner, R.E., Chrisey, D.B., Horwitz, J.S., and Grabowski, K.S.: The preparation of epitaxial platinum by pulsed laser deposition. Surf. Coat. Technol. 51, 476 (1992).CrossRefGoogle Scholar
24McIntyre, P.C., Aggiore, C.J., and Nastasi, M.: Orientation selection in thin platinum films on (001) MgO. J. Appl. Phys. 77, 6201 (1995).CrossRefGoogle Scholar
25Minvielle, T.J., White, R.L., Hildner, M.L., and Wilson, R.J.: Temperature dependnce of the epitaxial growth of Pt on basal plane sapphire. Surf. Sci. 366, L755 (1996).CrossRefGoogle Scholar
26Morcrette, M., Gutierrez-Llorente, A., Seiler, W., Perriere, J., Laurent, A., and Barboux, P.: Epitaxial growth of Pt and oxide multilayers on MgO by laser ablation. J. Appl. Phys. 88, 5100 (2000).CrossRefGoogle Scholar
27Narayan, J., Tiwari, P., Jagannadham, K., and Holland, O.W.: Formation of epitaxial and textured platinum films on ceramics-(100) MgO single crystals by pulsed laser deposition. Appl. Phys. Lett. 64, 2093 (1994).CrossRefGoogle Scholar
28Dehm, G., Rühle, M., Ding, G., and Raj, R.: Growth and structure of copper thin films deposited on (0001) sapphire by molecular beam epitaxy. Philos. Mag. B 71, 1111 (1995).CrossRefGoogle Scholar
29Dong, L., Srolovitz, D.J., Was, G.S., Zhao, Q., and Rollett, A.D.: Combined out-of-plane and in-plane texture control in thin films using ion-beam-assisted deposition. J. Mater. Res. 16, 210 (2001).CrossRefGoogle Scholar
30Liu, C.S. and Chen, L.J.: Effects of substrate cleaning and film thickness on the epitaxial growth of ultrahigh vacuum deposited Cu thin films on (001) Si. Appl. Surf. Sci. 92, 84 (1996).CrossRefGoogle Scholar
31Wei, H.L., Huang, H., Woo, C.H., Zheng, R.K., Wen, G.H., and Zhang, X.X.: Development of <110> texture in copper thin films. Appl. Phys. Lett. 80, 2290 (2002).CrossRefGoogle Scholar
32Francis, A.J., Cao, Y., and Salvador, P.A.: Epitaxial growth of Cu(100) and Pt(100) thin films on perovskite substrates. Thin Solid Films 496, 317 (2006).CrossRefGoogle Scholar
33Bîrjega, M.I., Topa, V., and Tedorescu, V.: Structure of gold thin films evaporated onto alkali halide substrates with colloidal centers. Thin Solid Films 32, 209 (1976).CrossRefGoogle Scholar
34Bock, F.X., Christensen, T.M., Rivers, S.B., Doucette, L.D., and Lad, R.J.: Growth and structure of silver and silver oxide thin films on sapphire. Thin Solid Films 468, 57 (2004).CrossRefGoogle Scholar
35Zignani, F., Missiroli, G.F., Desalvo, A., and Petralia, S.: Effects of vacuum deposition conditions on the structure of (111) epitaxial gold films. Nuovo Cimento 15B, 539 (1968).CrossRefGoogle Scholar
36Liu, C.L., Cohen, J.M., Adams, J.B., and Voter, A.F.: EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf. Sci. 253, 334 (1991).CrossRefGoogle Scholar
37Vitos, L., Ruban, A.V., Skriver, H.L., and Kollár, J.: The surface energy of metals. Surf. Sci. 411, 186 (1998).CrossRefGoogle Scholar
38Kawamura, M., Abe, Y., and Sasaki, K.: Orientation of metal films deposited by sputtering using Ar/N2 gases. Thin Solid Films 469–470, 491 (2004).CrossRefGoogle Scholar
39Wagner, T., Polli, A.D., Richter, G., and Stanzick, H.: Epitaxial growth of metals on (100) SrTiO3: The influence of lattice mismatch and reactivity. Z. Metallkd. 92, 701 (2001).Google Scholar
40Polli, A.D., Wagner, T., Gemming, T., and Rühle, M.: Growth of platinum on TiO2- and SrO-terminated SrTiO3(100). Surf. Sci. 448, 279 (2000).CrossRefGoogle Scholar
41Lairson, B.M., Visokay, M.R., Sinclair, R., Hagstrom, S., and Clemens, B.M.: Epitaxial Pt(001), Pt(110), and Pt(111) films on MgO(001), MgO(110), MgO(111), and Al2O3(0001). Appl. Phys. Lett. 61, 1390 (1992).CrossRefGoogle Scholar
42Francis, A.J. and Salvador, P.A.: Effect of surface treatment on chiral and achiral SrTiO3 surface morphology and metal thin film growth, in Surfaces, Interfaces and Science of Ceramic Joining, edited by Weil, K.S., Reimanis, I.E. and Lewinsohn, C.A. (Ceram. Trans. 158, Wiley, Hoboken, NJ, 2005), pp. 3746.Google Scholar
43Borsa, D.M. and Boerma, D.O.: Growth, structural, and optical properties of Cu3N thin films. Surf. Sci. 548, 95 (2004).CrossRefGoogle Scholar
44Eastman, J.A., Fuoss, P.H., Rehn, L.E., Baldo, P.M., Zhou, G-W., Fong, D.D., and Thompson, L.J.: Early-stage suppression of Cu(001) oxidation. Appl. Phys. Lett. 87, 051914 (2005).CrossRefGoogle Scholar
45Carter, A.C., Chang, W., Qadri, S.B., Horwitz, J.S., Leuchtner, R.E., and Chrisey, D.B.: Micron thick epitaxial (100) Ag film growth on MgO. J. Mater. Res. 13, 1418 (1998).CrossRefGoogle Scholar
46Flank, A.M., Delaunay, R., Lagarde, P., Pompa, M., and Jupille, J.: Epitaxial silver layer at the MgO(100) interface. Phys. Rev. B 53, R1737 (1996).CrossRefGoogle Scholar
47Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H.: Atomic control of the SrTiO3 crystal surface. Science 266, 1540 (1994).CrossRefGoogle ScholarPubMed
48Koster, G., Kropman, B.L., Rjinders, G.J.H.M., Blank, D.H.A., and Rogalla, H.: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 (1998).CrossRefGoogle Scholar
49Reed, T.B.: Free Energies of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations (MIT Press, Cambridge, MA, 1971).Google Scholar
50Gilles, B., Eymery, J., Marty, A., Joud, J.C., and Chamberod, A.: The growth of Ni overlayers on Au(100) buffers deposited on GaAs(100) and MgO(100) substrates, in Interface Dynamics and Growth, edited by Liang, K.S., Anderson, M.P., Bruinsma, R.F. and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1991), pp. 511516.Google Scholar
51Wagner, T., Richter, G., and Rühle, M.: Epitaxy of Pd thin films on (100) SrTiO3: A three-step growth process. J. Appl. Phys. 89, 2606 (2001).CrossRefGoogle Scholar
52Gjostein, N.A.: Surface self-diffusion in FCC and BCC metals: A comparison of theory and experiment, in Surfaces and Interfaces edited by Burke, J.J., Reed, N.L. and Weiss, V. (Syracuse Univ. Press, Syracuse, NY, 1967), pp. 271304.CrossRefGoogle Scholar
53Andersen, J.E.T. and Møller, P.J.: Ultrathin deposition of copper at room temperature. Thin Solid Films 186, 137 (1990).CrossRefGoogle Scholar
54Conard, T., Rousseau, A-C., Yu, L.M., Ghijsen, J., Sporken, R., Caudano, R., and Johnson, R.L.: Electron spectroscopy study of the Cu/SrTiO3(100) interface. Surf. Sci. 359, 82 (1996).CrossRefGoogle Scholar
55Asthagiri, A. and Sholl, D.S.: DFT study of Pt adsorption on low-index SrTiO3 surfaces: SrTiO3(100), SrTiO3(111), SrTiO3(110). Surf. Sci. 581, 66 (2005).CrossRefGoogle Scholar
56Chatain, D., Ghetta, V., and Wynblatt, P.: Equilibrium shape of copper crystals grown on sapphire. Interface Sci. 12, 7 (2004).CrossRefGoogle Scholar
57Overbury, S.H., Bertrand, P.A., and Somorjai, G.A.: Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chem. Rev. 75, 547 (1975).CrossRefGoogle Scholar
58McLean, M.: Determination of the surface energy of copper as a function of crystallographic orientation and temperature. Acta Metall. 19, 387 (1971).CrossRefGoogle Scholar
59Heyraud, J.C. and Metois, J.J.: Equilibrium shape and temperature; Lead on graphite. Surf. Sci. 128, 334 (1983).CrossRefGoogle Scholar
60Wang, Z. and Wynblatt, P.: The equilibrium form of pure gold crystals. Surf. Sci. 398, 259 (1998).CrossRefGoogle Scholar
61Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).CrossRefGoogle ScholarPubMed
62Ning, T., Yu, Q., and Ye, Y.: Multilayer relaxation at the surface of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al. Surf. Sci. 206, L857 (1988).CrossRefGoogle Scholar
63Rodríguez, A.M., Bozzolo, G., and Ferrante, J.: Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory. Surf. Sci. 289, 100 (1993).CrossRefGoogle Scholar