Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T08:51:49.507Z Has data issue: false hasContentIssue false

Crystal growth and structural analysis of perovskite chalcogenide BaZrS3 and Ruddlesden–Popper phase Ba3Zr2S7

Published online by Cambridge University Press:  28 November 2019

Shanyuan Niu
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Boyang Zhao
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Kevin Ye
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Elisabeth Bianco
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, USA
Jieyang Zhou
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Michael E. McConney
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, USA
Charles Settens
Affiliation:
Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Ralf Haiges
Affiliation:
Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
Rafael Jaramillo
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Jayakanth Ravichandran*
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA; and Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS3 and its Ruddlesden–Popper phase Ba3Zr2S7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS3 and P42/mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba3Zr2S7. Rocking curves with full width at half maximum of 0.011° for BaZrS3 and 0.027° for Ba3Zr2S7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, Y-Y., Agiorgousis, M.L., Zhang, P., and Zhang, S.: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581 (2015).CrossRefGoogle ScholarPubMed
Wang, H., Gou, G., and Li, J.: Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507 (2016).CrossRefGoogle Scholar
Kuhar, K., Crovetto, A., Pandey, M., Thygesen, K.S., Seger, B., Vesborg, P.C.K., Hansen, O., Chorkendorff, I., and Jacobsen, K.W.: Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017).CrossRefGoogle Scholar
Ju, M-G., Dai, J., Ma, L., and Zeng, X.C.: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 48, 1700216 (2017).CrossRefGoogle Scholar
Niu, S., Joe, G., Zhao, H., Zhou, Y., Orvis, T., Huyan, H., Salman, J., Mahalingam, K., Urwin, B., Wu, J., Liu, Y., Tiwald, T.E., Cronin, S.B., Howe, B.M., Mecklenburg, M., Haiges, R., Singh, D.J., Wang, H., Kats, M.A., and Ravichandran, J.: Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 12, 392 (2018).CrossRefGoogle Scholar
Niu, S., Sarkar, D., Williams, K., Zhou, Y., Li, Y., Bianco, E., Huyan, H., Cronin, S.B., McConney, M.E., Haiges, R., Jaramillo, R., Singh, D.J., Tisdale, W.A., Kapadia, R., and Ravichandran, J.: Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882 (2018).CrossRefGoogle Scholar
Filippone, S.A., Sun, Y-Y., and Jaramillo, R.: Determination of adsorption-controlled growth windows of chalcogenide perovskites. MRS Commun. 8, 145 (2018).CrossRefGoogle Scholar
Niu, S., Zhao, H., Zhou, Y., Huyan, H., Zhao, B., Wu, J., Cronin, S.B., Wang, H., and Ravichandran, J.: Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30, 4897 (2018).CrossRefGoogle Scholar
Hanzawa, K., Iimura, S., Hiramatsu, H., and Hosono, H.: Material design of green-light-emitting semiconductors: Perovskite-type sulfide SrHfS3. J. Am. Chem. Soc. 141, 5343 (2019).CrossRefGoogle ScholarPubMed
Swarnkar, A., Mir, W.J., Chakraborty, R., Jagadeeswararao, M., Sheikh, T., and Nag, A.: Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem. Mater. 31, 565 (2019).CrossRefGoogle Scholar
Bennett, J.W., Grinberg, I., and Rappe, A.M.: Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).CrossRefGoogle Scholar
Hahn, H. and Mutschke, U.: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269 (1957).CrossRefGoogle Scholar
Clearfield, A.: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 16, 135 (1963).CrossRefGoogle Scholar
Lelieveld, R. and Ijdo, D.J.W.: Sulphides with the GdFeO3 structure. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2223 (1980).CrossRefGoogle Scholar
Huster, J.: Die Kristallstruktur von BaTiS3. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 35, 775 (1980).CrossRefGoogle Scholar
Lee, C-S., Kleinke, K.M., and Kleinke, H.: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049 (2005).CrossRefGoogle Scholar
Okai, B., Takahashi, K., Saeki, M., and Yoshimoto, J.: Preparation and crystal structures of some complex sulphides at high pressures. Mater. Res. Bull. 23, 1575 (1988).CrossRefGoogle Scholar
Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R., and Ravichandran, J.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).CrossRefGoogle ScholarPubMed
Hung, Y.C., Fettinger, J.C., and Eichhorn, B.W.: Ba3Zr2S7, the low-temperature polymorph. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 53, 827 (1997).CrossRefGoogle Scholar
Chen, B.H., Eichhorn, B., and Wong-Ng, W.: Structural reinvestigation of Ba3Zr2S7 by single-crystal X-ray diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50, 161 (1994).CrossRefGoogle Scholar
Chen, B-H., Wong-Ng, W., and Eichhorn, B.W.: Preparation of new Ba4M3S10 phases (M = Zr, Hf) and single crystal structure determination of Ba4Zr3S10. J. Solid State Chem. 103, 75 (1993).CrossRefGoogle Scholar
Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., and Yan, Y.: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821 (2016).CrossRefGoogle Scholar
Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Deng, C., Gross, N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y-Y., Zhang, S., and Zeng, H.: Chalcogenide perovskites: An emerging class of ionic semiconductors. Nano Energy 22, 129 (2016).CrossRefGoogle Scholar
Gross, N., Sun, Y-Y., Perera, S., Hui, H., Wei, X., Zhang, S., Zeng, H., and Weinstein, B.A.: Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys. Rev. Appl. 8, 044014 (2017).CrossRefGoogle Scholar
Niu, S., Milam-Guerrero, J., Zhou, Y., Ye, K., Zhao, B., Melot, B.C., and Ravichandran, J.: Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4135 (2018).CrossRefGoogle Scholar
Woodward, P.M.: Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B53, 3243 (1997).CrossRefGoogle Scholar
Saeki, M., Yajima, Y., and Onoda, M.: Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7. J. Solid State Chem. 92, 286 (1991).CrossRefGoogle Scholar
Bachmann, F., Hielscher, R., and Schaeben, H.: Texture and Anisotropy of Polycrystals III, Solid State Phenomena, Vol. 160 (Trans Tech Publications Ltd., Zurich, 2010); pp. 6368.Google Scholar
Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112 (2008).CrossRefGoogle Scholar
Supplementary material: File

Niu et al. supplementary material

Niu et al. supplementary material 1

Download Niu et al. supplementary material(File)
File 871 KB
Supplementary material: File

Niu et al. supplementary material

Niu et al. supplementary material 2

Download Niu et al. supplementary material(File)
File 142.9 KB